## Preparation and Characterization of Cobalt(III) Complexes Containing 1,1'-Bis(diphenylphosphino)ferrocene (dppf) or 1,1'-Bis(dimethylphosphino)ferrocene (dmpf) as a Bidentate Ligand, and Molecular Structures of [Co(acac)<sub>2</sub>(dmpf)]B(C<sub>6</sub>H<sub>5</sub>)<sub>4</sub> and [Co(dtc)<sub>2</sub>(dmpf)]B(C<sub>6</sub>H<sub>5</sub>)<sub>4</sub> (acac=2,4-pentanedionate ion, dtc=dimethyldithiocarbamate ion)

Masahiro Adachi, Masakazu Kita, Kazuo Kashiwabara, Junnosuke Fujita,\*
Naoyuki Іітака,† Saeko Kurachi,† Shigeru Онва,†
and Dou-man Jin††

Department of Chemistry, Faculty of Science, Nagoya University, Chikusa-ku, Nagoya 464-01

†Department of Chemistry, Faculty of Science and Technology, Keio University,
3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223

(Received February 29, 1992)

Four new complexes, [Co(acac or dtc)<sub>2</sub>(dppf or dmpf)]X (X=BF<sub>4</sub>, B(C<sub>6</sub>H<sub>5</sub>)<sub>4</sub>) have been prepared and characterized by absorption and <sup>1</sup>H NMR spectra, and electrochemical measurements. The [Co(acac)<sub>2</sub>(dppf)]<sup>†</sup> complex exhibits the first d-d band at much lower energy than that of [Co(acac)<sub>2</sub>(dppe)]<sup>†</sup> (dppe=1,2-bis(diphenylphosphino)ethane), while the other complexes give the bands at similar energies to those of the corresponding diphosphine complexes. The structures of two dmpf complexes have been determined by the X-ray diffraction method. Crystal data are: [Co(acac)<sub>2</sub>(dmpf)]B(C<sub>6</sub>H<sub>5</sub>)<sub>4</sub> (1), monoclinic,  $P2_1/a$ , a=20.366(4), b=13.513(2), c=16.860(2) Å,  $\beta$ =108.09(2)°, V=4411(1) ų, Z=4, R=0.041 for 5774 reflections. [Co(dtc)<sub>2</sub>(dmpf)]B(C<sub>6</sub>H<sub>5</sub>)<sub>4</sub> (2), monoclinic, C2/c, a=33.573(7), b=10.148(1), c=31.039(6) Å,  $\beta$ =123.13(1)°, V=8856(2) ų, Z=8, R=0.044 for 6323 reflections. In these complexes dmpf functions as a bidentate chelate ligand with the Co-P bond distances of 2.250(1)—2.257(2) Å and the P-Co-P chelate angles are 101.09(4)° in 1 and 102.3(1)° in 2. The trans influence of the phosphino donor group is observed on the Co-O (ca. 0.04 Å) and Co-S (ca. 0.03 Å) bond distances.

As an extension of our preparative work for octahedral cobalt(III)-phosphine complexes,1) we have studied the coordination ability of bulky 1,1'-bis(diphenylphosphino) ferrocene (dppf) and its dimethyl analogue (dmpf) towards a hard cobalt(III) ion. A number of transition metal complexes of dppf have been reported,<sup>2)</sup> but little is known for octahedral complexes except several carbonyl complexes of metals with the low oxidation number.3) On the other hand, [MCl<sub>2</sub>(dmpf)] (M=Ni, Pd)4) are only known complexes of dmpf to our knowledge, although dmpf is expected to have stronger affinity towards metal ions than dppf, since the -PMe<sub>2</sub> group of dmpf is less bulky and more basic than the -PPh<sub>2</sub> group of dppf. This paper reports the preparation and characterization of bis-acetylacetonato (acac) and dimethyldithiocarbamato (dtc) cobalt(III) complexes of these bulky diphosphine ligands, in addition to the X-ray crystal analysis of [Co(acac)<sub>2</sub>(dmpf)]B(C<sub>6</sub>H<sub>5</sub>)<sub>4</sub> and  $[Co(dtc)_2(dmpf)]B(C_6H_5)_4$ .

## Experimental

The dppf<sup>5)</sup> and dmpf<sup>4,5)</sup> ligands were prepared by literature methods and handled under an atmosphere of nitrogen until they formed cobalt(III) complexes. All solvents used for the preparation were made oxygen-free by bubbling nitrogen through them for 20 min immediately before use. Absorption, and <sup>1</sup>H and <sup>13</sup>C NMR spectra were recorded on Hitachi

U3400 and R-90H spectrometers, respectively.

Preparation of the Complexes. [Co(acac)2(dppf)]BF4. Acetic acid (0.5 cm<sup>3</sup>) and a CH<sub>2</sub>Cl<sub>2</sub> solution (8 cm<sup>3</sup>) of dppf (582 mg, 1 mmol) were added to a methanol solution (10 cm<sup>3</sup>) of [Co(acac)<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>]<sup>6)</sup> (300 mg, 1 mmol) with stirring, yielding a yellow precipitate. The mixture was stirred for 30 min, and then PbO<sub>2</sub> (250 mg, 1 mmol) was added. Stirring was continued for another 30 min, and the mixture was filtered. The filtrate was concentrated to a small volume under reduced pressure. To the concentrate were added a methanol solution of LiBF4 and then diethyl ether. The yielded green precipitate was collected by filtration, and the product was mixed with CHCl<sub>3</sub> to extract the green complex. The extract obtained by filtration was mixed with diethyl ether, and the mixture was stored in a refrigerator to yield green crystals, which were collected by filtration, washed with diethyl ether, and air-dried. Yield: 450 mg (50%). Found: C, 58.72; H, 4.67%. Calcd for  $[Co(acac)_2(dppf)]BF_4=C_{44}H_{42}O_4BF_4P_2-$ FeCo: C, 58.82; H, 4.71%. <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$ =1.72(s, 6H), 1.80(s, 6H), 5.02(s, 2H), 4.44—5.26(m, 8H), 7.25—7.80(m, The complex is soluble in methanol, chloroform, ace-20H). tone, and dimethyl sulfoxide, but insoluble in water and diethyl ether.

[Co(acac)<sub>2</sub>(dmpf)]B(C<sub>6</sub>H<sub>5</sub>)<sub>4</sub>. A methanol solution (10 cm<sup>3</sup>) containing [Co(acac)<sub>3</sub>]<sup>7)</sup> (178 mg, 0.5 mmol) and dmpf (156 mg, 0.5 mmol) was stirred for 5 h at room temperature. The resulting violet solution was diluted five times with water and applied on a column ( $\phi$  2.7 cm×30 cm) of SP-Sephadex C-25. The adsorbed products were eluted with an aqueous solution of 0.05 mol dm<sup>-3</sup> NaCl. The eluate of the major dark violet band was evaporated to dryness under reduced pressure. The residue was extracted with CH<sub>2</sub>Cl<sub>2</sub>, the extract was evaporated

<sup>††</sup> Present address; Henan Institute of Chemistry, Zengzou, The People's Republic of China.

again to dryness, and the brown product was dissolved in methanol. On addition of a methanol solution of NaB-( $C_6H_5$ )<sub>4</sub>, the solution yielded a dark brown precipitate, which was collected by filtration and recrystallized from hot methanol to give dark brown crystals. Yield: 208 mg (47%). Found: C, 65.35; H, 6.25%. Calcd for [Co(acac)<sub>2</sub>(dmpf)]-B( $C_6H_5$ )<sub>4</sub>= $C_{48}H_{54}O_4BP_2FeCo$ : C, 65.32; H, 6.18%. <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$ =1.08(m, 6H), 1.40(m, 6H), 1.87(s, 6H), 2.12(s, 6H), 4.38—4.50(m, 8H), 5.43(s, 2H), 6.86—7.55(m, 20H). The complex is soluble in the same solvents as for the above dppf complex, but is less soluble in methanol than the dppf one.

 $[Co(dtc)_2(dppf)]BF_4 \cdot 0.5CH_2Cl_2$ . Addition of a  $CH_2Cl_2$ solution (8 cm<sup>3</sup>) of dppf (582 mg, 1 mmol) to a methanol solution (15 cm<sup>3</sup>) of Co(BF<sub>4</sub>)<sub>2</sub>·6H<sub>2</sub>O (170 mg, 0.5 mmol) resulted in an immediate precipitation of an orange product. After stirring the mixture for 30 min, a CH<sub>2</sub>Cl<sub>2</sub> solution (5 cm³) of tetramethylthiuram disulfide (60 mg, 0.25 mmol) was added, and the mixture was stirred for 1 h. A dark brown precipitate formed on addition of diethyl ether was collected by filtration, and washed with diethyl ether. The product was dissolved in CH<sub>2</sub>Cl<sub>2</sub>, filtered, mixed with diethyl ether, and the mixture was stored in a refrigerator to yield dark green-brown crystals. Yield: 83 mg (18%). Found: C, 49.45; H, 4.10; N, 2.79%. Calcd for  $[Co(dtc)_2(dppf)]BF_4 \cdot 0.5CH_2Cl_2 =$ C<sub>40.5</sub>H<sub>41</sub>N<sub>2</sub>BF<sub>4</sub>P<sub>2</sub>S<sub>4</sub>ClFeCo: C, 49.48; H, 4.20; N, 2.85%. <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$ =2.72(s, 6H), 2.83(s, 6H), 4.52—4.84(m, 8H), 7.28-7.70(m, 20H). Solubilities of the complex in various solvents are very similar to the corresponding acac complex.

 $[Co(dtc)_2(dmpf)]B(C_6H_5)_4$ . To a methanol solution (5 cm<sup>3</sup>) of Co(BF<sub>4</sub>)<sub>2</sub>·6H<sub>2</sub>O (170 mg, 0.5 mmol) were added dmpf (191 mg, 0.62 mmol) and then a CH<sub>2</sub>Cl<sub>2</sub> solution (5 cm<sup>3</sup>) of tetramethylthiuram disulfide (60 mg, 0.25 mmol). The solution was stirred for 3 h, and then a methanol solution (5 cm<sup>3</sup>) of Na(dtc) · 2H<sub>2</sub>O (60 mg, 0.5 mmol) was added. The mixture was stirred for another 1 h, and then evaporated to dryness under reduced pressure. The residue was dissolved in a small amount of methanol, and the solution was applied on a column ( $\phi$  3 cm $\times$ 20 cm) of Sephadex LH-20. By elution with methanol, a major dark violet band was developed. The eluate of the band was concentrated to a small volume, and a methanol solution of NaB(C<sub>6</sub>H<sub>5</sub>)<sub>4</sub> was added. The dark violet precipitate which formed was collected by filtration, and dissolved in a mixture of CH<sub>2</sub>Cl<sub>2</sub> and methanol. Dark brown crystals of the complex were grown by slow evaporation of the solvent. Yield: 154 mg (33%). Found: C, 57.25; H, 5.65; N, 2.97%. Calcd for  $[Co(dtc)_2(dmpf)]B(C_6H_5)_4=C_{44}H_{52}N_2BP_2S_4FeCo:$ C, 57.15; H, 5.67; N, 3.03%. <sup>1</sup>H NMR (CDCl<sub>3</sub>)  $\delta$ =1.10— 1.63(m, 12H), 3.10(s, 3H), 3.14(s, 6H), 4.26-4.54(m, 8H),6.79—7.54(m, 20H). The complex is soluble in the same solvents as for the corresponding dppf complex.

**X-Ray Analyses.** Crystal data of [Co(acac)<sub>2</sub>(dmpf)]-B(C<sub>6</sub>H<sub>5</sub>)<sub>4</sub> (1): monoclinic,  $P2_1/a$ , a=20.366(4), b=13.513(2), c=16.860(2) Å,  $\beta$ =108.09(2)°, V=4411(1) ų, Z=4,  $D_m$ =1.31(1) g cm<sup>-3</sup>,  $D_c$ =1.329 g cm<sup>-3</sup>,  $\mu$ (Mo  $K\alpha$ )=8.156 cm<sup>-1</sup>. A brown crystal of approximate dimensions 0.68×0.12×0.15 mm³ grown from a methanol solution of the complex was used for X-ray analysis. Diffraction data were collected on a Rigaku AFC-5R diffractometer with graphite monochromatized Mo  $K\alpha$  radiation ( $\lambda$ =0.71069 Å). Within the range 2°<2 $\theta$ <60°, 5774 independent reflections with  $|F_o|$ >3 $\sigma$ ( $|F_o|$ ) were obtained. The calculations were carried out on a HITAC M-680H computer at the Computer Center of the

Institute for Molecular Science with the program system UNICS III.8) The absorption correction was made by using the DABEX program of the Computer Center Library. The structure was solved by the usual heavy-atom method; the

Table 1. Positional Parameters ( $\times 10^4$ ) and Equivalent Temperature Factors (Å<sup>2</sup>) of [Co(acac)<sub>2</sub>(dmpf)]B(C<sub>6</sub>H<sub>5</sub>)<sub>4</sub>

| $\frac{[\text{Co}(\text{acac})_2(\text{dmp1})]B(\text{C}_6\text{H}_5)_4}{\text{Co}(\text{acac})_2(\text{dmp1})}$ |                    |                    |                    |                |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------|--------------------|--------------------|--------------------|----------------|--|--|--|--|
| Atom                                                                                                             | x                  | У                  | Z                  | $m{B}_{ m eq}$ |  |  |  |  |
| Co                                                                                                               | 2324.2(3)          | 1938.5(4)          | 7557.7(4)          | 2.5            |  |  |  |  |
| Fe                                                                                                               | 3402.5(4)          | 1528.6(5)          | 10147.4(4)         | 3.2            |  |  |  |  |
| P(1)                                                                                                             | 2426.4(7)          | 560.9(8)           | 8337.4(8)          | 3.2            |  |  |  |  |
| P(2)                                                                                                             | 3073.7(6)          | 2956.8(8)          | 8454.8(7)          | 2.7            |  |  |  |  |
| O(1)                                                                                                             | 3034(2)            | 1473(3)            | 7150(2)            | 3.5            |  |  |  |  |
| O(2)                                                                                                             | 1605(2)            | 1198(2)            | 6755(2)            | 3.3            |  |  |  |  |
| O(3)                                                                                                             | 1610(2)            | 2411(2)            | 7965(2)            | 2.8            |  |  |  |  |
| O(4)                                                                                                             | 2200(2)            | 2987(2)            | 6735(2)            | 3.0            |  |  |  |  |
| C(1)                                                                                                             | 2548(4)            | -510(4)            | 7771(4)            | 5.4            |  |  |  |  |
| C(1)                                                                                                             | 1636(3)            | 324(5)             | 8588(5)            | 5.4            |  |  |  |  |
| C(3)                                                                                                             | 3096(3)            | 415(3)             | 9319(3)            | 3.3            |  |  |  |  |
| C(4)                                                                                                             | 3812(3)            | 597(4)             | 9483(4)            | 4.2            |  |  |  |  |
| C(5)                                                                                                             | 4139(4)            | 445(5)             | 10350(4)           | 5.6            |  |  |  |  |
| C(6)                                                                                                             | 3642(4)            | 179(5)             | 10330(4)           | 5.6            |  |  |  |  |
| C(0)<br>C(7)                                                                                                     | 2994(3)            | 153(4)             | 10719(4)           | 4.4            |  |  |  |  |
|                                                                                                                  |                    | 2953(4)            | 8359(4)            | 4.1            |  |  |  |  |
| C(8)<br>C(9)                                                                                                     | 3928(3)<br>2797(3) | 4230(4)            | 8249(3)            | 3.9            |  |  |  |  |
|                                                                                                                  |                    |                    | 9547(3)            | 2.9            |  |  |  |  |
| C(10)                                                                                                            | 3183(3)            | 2832(3)            | ` '                |                |  |  |  |  |
| C(11)                                                                                                            | 3823(3)            | 2901(4)            | 10233(3)           | 3.9            |  |  |  |  |
| C(12)                                                                                                            | 3663(4)            | 2694(4)            | 10979(3)           | 4.5            |  |  |  |  |
| C(13)                                                                                                            | 2954(4)            | 2493(4)            | 10771(3)           | 4.4            |  |  |  |  |
| C(14)                                                                                                            | 2654(3)            | 2580(4)            | 9903(3)            | 3.4            |  |  |  |  |
| C(15)                                                                                                            | 3552(4)<br>2015(2) | 972(6)             | 6154(5)            | 6.3            |  |  |  |  |
| C(16)                                                                                                            | 2915(3)            | 1126(4)            | 6406(4)            | 4.1            |  |  |  |  |
| C(17)                                                                                                            | 2270(3)            | 881(5)             | 5877(3)            | 4.4            |  |  |  |  |
| C(18)                                                                                                            | 1659(3)            | 878(4)             | 6075(3)<br>5499(4) | 3.6            |  |  |  |  |
| C(19)                                                                                                            | 1016(3)            | 438(5)             |                    | 5.0            |  |  |  |  |
| C(20)                                                                                                            | 525(3)             | 3073(4)            | 7865(4)            | 4.0<br>3.2     |  |  |  |  |
| C(21)<br>C(22)                                                                                                   | 1115(2)<br>1110(3) | 2974(4)<br>3479(4) | 7530(3)            |                |  |  |  |  |
|                                                                                                                  |                    |                    | 6814(3)<br>6477(3) | 3.8            |  |  |  |  |
| C(23)<br>C(24)                                                                                                   | 1659(3)<br>1633(3) | 3505(4)<br>4203(5) | 5778(4)            | 3.3<br>4.8     |  |  |  |  |
| C(24)<br>C(25)                                                                                                   | 1887(3)            | 2121(4)            | 3085(3)            | 3.6            |  |  |  |  |
| C(25)<br>C(26)                                                                                                   | 2377(3)            | 1773(4)            | 2724(4)            | 3.9            |  |  |  |  |
| C(20)<br>C(27)                                                                                                   | 3075(3)            | 1940(5)            | 3053(4)            | 4.7            |  |  |  |  |
| C(27)<br>C(28)                                                                                                   | 3317(3)            | 2518(6)            | 3750(5)            | 5.8            |  |  |  |  |
| C(29)                                                                                                            | 2866(4)            | 2916(6)            | 4113(3)            | 6.2            |  |  |  |  |
| C(30)                                                                                                            | 2163(3)            | 2707(5)            | 3785(4)            | 5.0            |  |  |  |  |
| C(31)                                                                                                            | 934(3)             | 702(4)             | 3014(3)            | 3.3            |  |  |  |  |
| C(31)                                                                                                            | 265(3)             | 337(4)             | 2900(4)            | 4.4            |  |  |  |  |
| C(32)                                                                                                            | 142(3)             | -589(4)            | 3170(4)            | 4.6            |  |  |  |  |
| C(34)                                                                                                            | 681(4)             | -1200(4)           | 3570(4)            | 4.5            |  |  |  |  |
| C(35)                                                                                                            | 1340(3)            | -886(4)            | 3687(4)            | 4.4            |  |  |  |  |
| C(36)                                                                                                            | 1463(3)            | 53(4)              | 3418(3)            | 3.5            |  |  |  |  |
| C(37)                                                                                                            | 592(2)             | 2597(4)            | 3041(4)            | 3.7            |  |  |  |  |
| C(38)                                                                                                            | 566(3)             | 2499(5)            | 3861(4)            | 4.9            |  |  |  |  |
| C(39)                                                                                                            | 204(4)             | 3137(6)            | 4215(5)            | 5.7            |  |  |  |  |
| C(40)                                                                                                            | -145(3)            | 3930(5)            | 3768(5)            | 5.8            |  |  |  |  |
|                                                                                                                  |                    | , ,                | 2972(5)            | 6.3            |  |  |  |  |
| C(41)<br>C(42)                                                                                                   | -146(4) 214(3)     | 4038(5)<br>3388(4) | 2615(4)            | 4.8            |  |  |  |  |
| C(42)<br>C(43)                                                                                                   | 883(3)             | 1832(4)            | 1668(3)            | 3.5            |  |  |  |  |
| C(43)<br>C(44)                                                                                                   | 978(3)             | 2689(4)            | 1250(4)            | 4.6            |  |  |  |  |
| C(44)<br>C(45)                                                                                                   |                    |                    | 408(4)             | 5.1            |  |  |  |  |
| C(45)<br>C(46)                                                                                                   | 923(3)<br>751(3)   | 2702(5)<br>1844(5) | -51(4)             | 5.1            |  |  |  |  |
| C(46)<br>C(47)                                                                                                   | 751(3)<br>637(3)   | 999(5)             | 325(4)             | 4.8            |  |  |  |  |
| C(47)<br>C(48)                                                                                                   | 691(3)             | 999(3)<br>994(4)   | 1173(3)            | 3.9            |  |  |  |  |
| C(48)<br>B                                                                                                       | 1059(3)            | 1824(4)            | 2692(4)            | 3.4            |  |  |  |  |
| D                                                                                                                | 1007(3)            | 1047(7)            | 2072(7)            | 5.4            |  |  |  |  |

position of Co was deduced by means of the Patterson synthesis, and all the non-hydrogen atoms were located by the subsequent Fourier synthesis. The positions of all hydrogen atoms were identified in subsequent difference-Fourier maps. The structure was refined by the block-diagonal least squares method with anisotropic thermal parameters for non-hydrogen atoms and isotropic for hydrogen atoms. The function minimized was  $\Sigma ||F_o| - |F_c||^2$ . Final R was 0.041 for 5774 observed unique reflections, and the atomic parameters of non-hydrogen atoms are listed in Table 1.9)

Crystal data of [Co(dtc)<sub>2</sub>(dmpf)]B(C<sub>6</sub>H<sub>5</sub>)<sub>4</sub> (2): Monoclinic, C2/c, a=33.573(7), b=10.148(1), c=31.039(6) Å,  $\beta=123$ .  $13(1)^{\circ}$ , V=8856(2) Å<sup>3</sup>, Z=8,  $\mu(Mo K\alpha)=8.939$  cm<sup>-1</sup>,  $D_{\rm m}=1.42(1),\ D_{\rm c}=1.39\ {\rm g\,cm^{-3}}.$  Crystals of 2 were grown from a dichloromethane-methanol solution of the complex. A prismatic crystal of 0.25×0.40×0.55 mm<sup>3</sup> in dimensions was mounted on a Rigaku AFC-5 diffractometer. Based on the four-circle angles of twenty reflections searched in the range of  $2\theta < 12^{\circ}$ , a triclinic unit cell was assigned. However, it was corrected to be monoclinic after the refinement as described later. The X-ray intensities were measured using graphite monochromatized Mo  $K\alpha$  radiation ( $\lambda$ =0.71073 Å). The  $\theta$ - $2\theta$  scan technique was employed at a scan rate of  $6^{\circ}$  min<sup>-1</sup> in  $\theta$ . Up to  $2\theta = 55^{\circ}$ , 20394 reflections were measured, 11546 reflections were observed with  $|F_0| > 3\sigma(|F_0|)$ , and 11508 unique ones were obtained after absorption correction by the Gaussian numerical integration method<sup>10)</sup> (transmission factor, 0.68 < A < 0.82). The lattice constants were determined from 45  $2\theta$  values ( $20^{\circ} < 2\theta < 30^{\circ}$ ). The structure was solved by the direct methods,111 and non-hydrogen atoms were refined anisotropically to R=0.063 for 11508 reflections. At this stage of the refinement assuming the space group  $P\overline{1}$  with Z=4, reduced cell analysis by NBS\*AID80<sup>12)</sup> indicated that the triclinic unit cell could be transferred to a monoclinic C centered cell. It is worth mentioning that reduced cell analysis shoud be made based on the accurate cell dimensions. After the axis transformation, 2/m Laue symmetry of the reflection data appeared (Rint=0.021). Systematic absences,  $h \ k \ l, \ h+k \ \text{odd}; \ h0l, \ h \ \text{or} \ l \ \text{odd} \ \text{indicated the space group} \ Cc \ \text{or}$ C2/c. The structure model of  $P\overline{1}$  could be transferred into that of C2/c, reducing the number of independent atoms to half, and giving R=0.060 for 6323 unique reflections. Rdropped to 0.044 after including all the hydrogen atoms in the refinement. The function,  $\sum w||F_o|-|F_c||^2$ , was minimized with  $w^{-1} = \sigma^2(|F_o|) + (0.015|F_o|)^2$  by the block-diagonal leastsquares method. Complex neutral-atom scattering factors were used.<sup>13)</sup> The calculations were carried out on a FACOM M780/10 computer at Keio University using the computation program system UNICS III.8) The atomic parameters are listed in Table 2.9)

Electrochemistry. Rotating disk electrode voltammetry (RDE) measurements were carried out on  $CH_3CN$  solutions ([Co]: ca.  $1.0\times10^{-3}$  mol dm<sup>-3</sup>, 0.1 mol dm<sup>-3</sup> Bu<sub>4</sub>NBF<sub>4</sub>) at  $25\pm1$  °C by using a FUSO HECS 321B potential sweep unit and a FUSO HECS 317B potentiostat. A grassy-carbon rotating-disk (1500 rev min<sup>-1</sup> attached to a Yanako P10-RE Mark II head, a platinum-wire, and a  $Ag/Ag^+$  electrode (Ag/0.01 mol dm<sup>-3</sup>  $AgNO_3$ ) were used as the working, auxiliary, and reference electrodes, respectively. The oxidation wave of ferrocene was observed at +0.08 V vs.  $Ag/Ag^+$ . Cyclic voltammetry (CV) measurements were performed at a scan rate of 200 mV s<sup>-1</sup> with a grassy-carbon working electrode. Other experimental conditions were the same as those for

Table 2. Positional Parameters ( $\times 10^4$ ) and Equivalent Temperature Factors (Å<sup>2</sup>) of [Co(dtc)<sub>2</sub>(dmpf)]B(C<sub>6</sub>H<sub>5</sub>)<sub>4</sub>

| Atom         x         y         z         Beq           Co         4858.1(2)         2405.2(6)         1102.1(2)         2.3           Fe         3957.9(3)         -486.5(7)         1155.7(3)         2.9           P(1)         4235.7(5)         2700(1)         1183.4(5)         2.7           P(2)         4898.3(4)         196(1)         1076.9(5)         2.5           S(1)         5383.3(4)         2618(1)         1966.2(5)         2.9           S(2)         5588.5(4)         2391(1)         1205.9(5)         3.1           S(3)         4456.7(5)         2506(1)         228.5(5)         3.2           S(4)         4787.1(5)         4636(1)         918.9(5)         3.2           S(4)         4787.1(5)         4636(1)         918.9(5)         3.2           X(1)         6288(1)         2553(4)         2205(2)         3.1           N(2)         4350(2)         5009(4)         -105(2)         3.6           C(1)         5829(2)         2541(5)         1851(2)         2.8           C(2)         6472(2)         2679(6)         2751(2)         4.2           C(3)         6635(2)         2491(6)         2059(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |       |           |           |           |             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|-----------|-----------|-----------|-------------|
| Fe 3957.9(3) -486.5(7) 1155.7(3) 2.9 P(1) 4235.7(5) 2700(1) 1183.4(5) 2.7 P(2) 4898.3(4) 196(1) 1076.9(5) 2.5 S(1) 5383.3(4) 2618(1) 1966.2(5) 2.9 S(2) 5588.5(4) 2391(1) 1205.9(5) 3.1 S(3) 4456.7(5) 2506(1) 228.5(5) 3.2 S(4) 4787.1(5) 4636(1) 918.9(5) 3.2 N(1) 6288(1) 2553(4) 2205(2) 3.1 N(2) 4350(2) 5009(4) -105(2) 3.6 C(1) 5829(2) 2541(5) 1851(2) 2.8 C(2) 6472(2) 2679(6) 2751(2) 4.2 C(3) 6635(2) 2491(6) 2059(2) 4.3 C(4) 4509(2) 4192(5) 291(2) 2.8 C(5) 4129(2) 4552(6) -633(2) 4.8 C(6) 4396(3) 6436(6) -13(2) 5.1 C(7) 3693(3) 3266(6) 607(2) 4.6 C(8) 4333(2) 3972(5) 1661(2) 3.9 C(9) 5370(2) -592(5) 1670(2) 4.3 C(10) 5008(2) -360(5) 592(2) 4.1 C(11) 4035(2) 1374(5) 1407(2) 2.9 C(12) 3553(2) 946(6) 1188(2) 4.1 C(13) 3562(2) -146(6) 1467(3) 5.3 C(14) 4042(3) -421(6) 1864(2) 5.3 C(16) 4377(2) -779(5) 889(2) 2.8 C(20) 6472(2) -779(5) 889(2) 2.8 C(21) 7152(2) 9389(5) 6438(2) 2.8 C(22) 6676(2) 9185(5) 6036(2) 3.5 C(23) 6302(2) 9933(6) 5962(2) 4.7 C(20) 3904(2) -456(5) 472(2) 3.0 C(21) 7152(2) 9389(5) 6438(2) 2.8 C(22) 6676(2) 9185(5) 6036(2) 3.5 C(23) 6302(2) 9933(6) 5962(2) 4.7 C(24) 6382(2) 10944(6) 6297(2) 4.8 C(25) 6842(2) 11167(6) 6706(3) 5.2 C(26) 7215(2) 10428(5) 6763(2) 4.0 C(27) 7436(2) 7024(5) 6347(2) 2.7 C(28) 7136(2) 6443(5) 586(2) 3.8 C(29) 6997(2) 5134(6) 5787(2) 4.2 C(30) 7154(2) 4381(6) 6299(3) 5.0 C(31) 758(2) 10357(5) 5104(2) 3.4 C(33) 7588(2) 21044(6) 6297(2) 4.8 C(25) 6842(2) 11167(6) 6706(3) 5.2 C(26) 7215(2) 10428(5) 6753(2) 4.0 C(27) 7436(2) 7024(5) 6347(2) 2.7 C(28) 6758(2) 10357(5) 5104(2) 3.4 C(33) 7588(2) 210944(6) 6297(2) 4.8 C(29) 6997(2) 5134(6) 5787(2) 4.7 C(30) 7154(2) 4381(6) 629(3) 5.0 C(31) 7442(2) 4851(6) 6691(3) 5.3 C(33) 7588(2) 9231(4) 5950(2) 2.4 C(34) 7442(2) 10528(5) 5781(2) 3.4 C(37) 7739(2) 9078(5) 5262(2) 2.9 C(38) 7745(2) 8848(5) 5683(2) 2.7 C(39) 8111(2) 8770(5) 6974(2) 3.0 C(40) 8525(2) 8791(5) 6974(2) 3.0 C(40) 8525(2) 8791(5) 6974(2) 3.8 C(41) 8976(2) 8901(6) 7418(2) 5.2 C(44) 8172(2) 8819(6) 7457(2) 4.2                                                                                                              | Atom  | X         | У         | Z         | $B_{ m eq}$ |
| Fe 3957.9(3) -486.5(7) 1155.7(3) 2.9 P(1) 4235.7(5) 2700(1) 1183.4(5) 2.7 P(2) 4898.3(4) 196(1) 1076.9(5) 2.5 S(1) 5383.3(4) 2618(1) 1966.2(5) 2.9 S(2) 5588.5(4) 2391(1) 1205.9(5) 3.1 S(3) 4456.7(5) 2506(1) 228.5(5) 3.2 S(4) 4787.1(5) 4636(1) 918.9(5) 3.2 N(1) 6288(1) 2553(4) 2205(2) 3.1 N(2) 4350(2) 5009(4) -105(2) 3.6 C(1) 5829(2) 2541(5) 1851(2) 2.8 C(2) 6472(2) 2679(6) 2751(2) 4.2 C(3) 6635(2) 2491(6) 2059(2) 4.3 C(4) 4509(2) 4192(5) 291(2) 2.8 C(5) 4129(2) 4552(6) -633(2) 4.8 C(6) 4396(3) 6436(6) -13(2) 5.1 C(7) 3693(3) 3266(6) 607(2) 4.6 C(8) 4333(2) 3972(5) 1661(2) 3.9 C(9) 5370(2) -592(5) 1670(2) 4.3 C(10) 5008(2) -360(5) 592(2) 4.1 C(11) 4035(2) 1374(5) 1407(2) 2.9 C(12) 3553(2) 946(6) 1188(2) 4.1 C(13) 3562(2) -146(6) 1467(3) 5.3 C(14) 4042(3) -421(6) 1864(2) 5.3 C(16) 4377(2) -779(5) 889(2) 2.8 C(20) 6472(2) -779(5) 889(2) 2.8 C(21) 7152(2) 9389(5) 6438(2) 2.8 C(22) 6676(2) 9185(5) 6036(2) 3.5 C(23) 6302(2) 9933(6) 5962(2) 4.7 C(20) 3904(2) -456(5) 472(2) 3.0 C(21) 7152(2) 9389(5) 6438(2) 2.8 C(22) 6676(2) 9185(5) 6036(2) 3.5 C(23) 6302(2) 9933(6) 5962(2) 4.7 C(24) 6382(2) 10944(6) 6297(2) 4.8 C(25) 6842(2) 11167(6) 6706(3) 5.2 C(26) 7215(2) 10428(5) 6763(2) 4.0 C(27) 7436(2) 7024(5) 6347(2) 2.7 C(28) 7136(2) 6443(5) 586(2) 3.8 C(29) 6997(2) 5134(6) 5787(2) 4.2 C(30) 7154(2) 4381(6) 6299(3) 5.0 C(31) 758(2) 10357(5) 5104(2) 3.4 C(33) 7588(2) 21044(6) 6297(2) 4.8 C(25) 6842(2) 11167(6) 6706(3) 5.2 C(26) 7215(2) 10428(5) 6753(2) 4.0 C(27) 7436(2) 7024(5) 6347(2) 2.7 C(28) 6758(2) 10357(5) 5104(2) 3.4 C(33) 7588(2) 210944(6) 6297(2) 4.8 C(29) 6997(2) 5134(6) 5787(2) 4.7 C(30) 7154(2) 4381(6) 629(3) 5.0 C(31) 7442(2) 4851(6) 6691(3) 5.3 C(33) 7588(2) 9231(4) 5950(2) 2.4 C(34) 7442(2) 10528(5) 5781(2) 3.4 C(37) 7739(2) 9078(5) 5262(2) 2.9 C(38) 7745(2) 8848(5) 5683(2) 2.7 C(39) 8111(2) 8770(5) 6974(2) 3.0 C(40) 8525(2) 8791(5) 6974(2) 3.0 C(40) 8525(2) 8791(5) 6974(2) 3.8 C(41) 8976(2) 8901(6) 7418(2) 5.2 C(44) 8172(2) 8819(6) 7457(2) 4.2                                                                                                              | Co    | 4858.1(2) | 2405.2(6) | 1102.1(2) | 2.3         |
| P(1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |           |           |           |             |
| P(2) 4898.3(4) 196(1) 1076.9(5) 2.5 S(1) 5383.3(4) 2618(1) 1966.2(5) 2.9 S(2) 5588.5(4) 2391(1) 1205.9(5) 3.1 S(3) 4456.7(5) 2506(1) 228.5(5) 3.2 S(4) 4787.1(5) 4636(1) 918.9(5) 3.2 N(1) 6288(1) 2553(4) 2205(2) 3.1 N(2) 4350(2) 5009(4) -105(2) 3.6 C(1) 5829(2) 2541(5) 1851(2) 2.8 C(2) 6472(2) 2679(6) 2751(2) 4.2 C(3) 6635(2) 2491(6) 2059(2) 4.3 C(4) 4509(2) 4192(5) 291(2) 2.8 C(5) 4129(2) 4552(6) -633(2) 4.8 C(6) 4396(3) 6436(6) -13(2) 5.1 C(7) 3693(3) 3266(6) 607(2) 4.6 C(8) 4336(3) 6436(6) -13(2) 5.1 C(7) 3693(3) 3266(6) 607(2) 4.6 C(8) 4335(2) 3972(5) 1661(2) 3.9 C(9) 5370(2) -592(5) 1670(2) 4.3 C(10) 5008(2) -360(5) 592(2) 4.1 C(11) 4035(2) 1374(5) 1407(2) 2.9 C(12) 3553(2) 946(6) 1188(2) 4.1 C(13) 3562(2) -146(6) 1467(3) 5.3 C(14) 4042(3) -421(6) 1864(2) 5.3 C(15) 4334(2) 523(5) 1834(2) 3.8 C(16) 4377(2) -779(5) 889(2) 2.8 C(17) 4347(2) -1976(5) 1117(2) 3.5 C(18) 3860(2) -2342(5) 844(2) 3.8 C(19) 3594(2) -1417(5) 453(2) 3.7 C(20) 3904(2) -456(5) 472(2) 3.0 C(21) 7152(2) 9389(5) 6438(2) 2.8 C(22) 6676(2) 9185(5) 6036(2) 3.5 C(23) 6302(2) 933(6) 5962(2) 4.7 C(24) 6382(2) 10944(6) 6297(2) 4.8 C(25) 6842(2) 11167(6) 6706(3) 5.2 C(26) 7215(2) 10428(5) 6763(2) 4.0 C(27) 7436(2) 7024(5) 6347(2) 2.7 C(28) 7136(2) 7024(5) 6347(2) 2.7 C(28) 7136(2) 6443(5) 5862(2) 3.8 C(29) 6997(2) 5134(6) 5787(2) 4.7 C(20) 3904(2) -456(5) 477(2) 3.9 C(21) 7758(2) 10428(5) 6763(2) 4.0 C(21) 7754(2) 4318(6) 6299(3) 5.0 C(24) 6382(2) 10944(6) 6297(2) 4.8 C(25) 6842(2) 11167(6) 6706(3) 5.2 C(26) 7215(2) 10428(5) 6763(2) 4.0 C(27) 7436(2) 7024(5) 6347(2) 2.7 C(28) 7136(2) 6443(5) 5862(2) 3.8 C(29) 6997(2) 5134(6) 5787(2) 4.7 C(20) 7586(2) 6158(5) 6758(2) 3.8 C(29) 6997(2) 5134(6) 5787(2) 4.7 C(30) 7154(2) 4318(6) 6209(3) 5.0 C(31) 7586(2) 6158(5) 6758(2) 3.8 C(33) 7588(2) 9231(4) 5950(2) 2.4 C(34) 7442(2) 1851(6) 6794(2) 3.0 C(34) 7442(2) 1851(6) 6794(2) 3.0 C(34) 7452(2) 8848(5) 5683(2) 2.7 C(34) 8628(2) 8931(6) 7457(2) 4.2 C(44) 8172(2) 8819(6) 7457(2) 4.2                                                                                                                          | P(1)  |           |           |           |             |
| S(1) 5383.3(4) 2618(1) 1966.2(5) 2.9 S(2) 5588.5(4) 2391(1) 1205.9(5) 3.1 S(3) 4456.7(5) 2506(1) 228.5(5) 3.2 S(4) 4787.1(5) 4636(1) 918.9(5) 3.2 N(1) 6288(1) 2553(4) 2205(2) 3.1 N(2) 4350(2) 5009(4) -105(2) 3.6 C(1) 5829(2) 2541(5) 1851(2) 2.8 C(2) 6472(2) 2679(6) 2751(2) 4.2 C(3) 6635(2) 2491(6) 2059(2) 4.3 C(4) 4509(2) 4192(5) 291(2) 2.8 C(5) 4129(2) 4552(6) -633(2) 4.8 C(6) 4396(3) 6436(6) -13(2) 5.1 C(7) 3693(3) 3266(6) 607(2) 4.6 C(8) 4353(2) 3972(5) 1661(2) 3.9 C(9) 5370(2) -592(5) 1670(2) 4.3 C(10) 5008(2) -360(5) 592(2) 4.1 C(11) 4035(2) 1374(5) 1407(2) 2.9 C(12) 3553(2) 946(6) 1188(2) 4.1 C(13) 3562(2) -146(6) 1467(3) 5.3 C(14) 4042(3) -421(6) 1864(2) 5.3 C(15) 4334(2) 523(5) 1834(2) 3.8 C(16) 4377(2) -779(5) 889(2) 2.8 C(17) 4347(2) -1796(5) 1117(2) 3.5 C(20) 3904(2) -456(5) 472(2) 3.0 C(21) 7152(2) 9389(5) 6438(2) 2.8 C(22) 6676(2) 9185(5) 6036(2) 3.5 C(23) 6302(2) 9933(6) 5962(2) 4.7 C(24) 6382(2) 10944(6) 6297(2) 4.8 C(25) 6842(2) 1167(6) 6706(3) 5.2 C(26) 715(2) 10428(5) 6763(2) 4.0 C(27) 7436(2) 7024(5) 6347(2) 2.7 C(28) 7136(2) 6443(5) 5862(2) 3.8 C(29) 6997(2) 5134(6) 6691(3) 5.3 C(31) 7442(2) 4851(6) 6691(3) 5.3 C(33) 7588(2) 9231(4) 5950(2) 2.4 C(34) 842(2) 11076(5) 5377(2) 3.9 C(36) 7585(2) 10357(5) 5104(2) 3.4 C(37) 7739(2) 9078(5) 526(2) 2.9 C(38) 7136(2) 6443(5) 5862(2) 3.8 C(39) 7586(2) 6158(5) 6758(2) 3.8 C(31) 7442(2) 4851(6) 6691(3) 5.3 C(32) 7586(2) 6158(5) 6758(2) 3.8 C(33) 7588(2) 9231(4) 5950(2) 2.4 C(34) 6382(2) 10944(6) 6297(2) 4.8 C(35) 7444(2) 10528(5) 6758(2) 3.9 C(36) 7585(2) 10357(5) 5104(2) 3.4 C(37) 7739(2) 9078(5) 526(2) 2.9 C(38) 7136(2) 848(5) 6697(2) 3.9 C(30) 7154(2) 4381(6) 6691(3) 5.3 C(31) 7442(2) 4851(6) 6691(3) 5.3 C(32) 7586(2) 6158(5) 6758(2) 3.8 C(33) 7588(2) 9231(4) 5950(2) 2.4 C(34) 6382(2) 8932(6) 7908(2) 5.2 C(34) 8628(2) 8932(6) 7908(2) 5.2 C(44) 8172(2) 8819(6) 7457(2) 4.2                                                                                                                                                                                                                                 | P(2)  |           |           |           |             |
| \$\( \text{S(2)} \) 5588.5(4) 2391(1) 1205.9(5) 3.1 \\ \$\( \text{S(3)} \) 4456.7(5) 2506(1) 228.5(5) 3.2 \\ \$\( \text{S(4)} \) 4787.1(5) 4636(1) 918.9(5) 3.2 \\ \$\( \text{N(1)} \) 6288(1) 2553(4) 2205(2) 3.1 \\ \$\( \text{N(2)} \) 4350(2) 5009(4) -105(2) 3.6 \\ \$\( \text{C(1)} \) 5829(2) 2541(5) 1851(2) 2.8 \\ \$\( \text{C(2)} \) 6472(2) 2679(6) 2751(2) 4.2 \\ \$\( \text{C(3)} \) 6635(2) 2491(6) 2059(2) 4.3 \\ \$\( \text{C(4)} \) 4509(2) 4192(5) 291(2) 2.8 \\ \$\( \text{C(5)} \) 4129(2) 4552(6) -633(2) 4.8 \\ \$\( \text{C(6)} \) 4396(3) 6436(6) -13(2) 5.1 \\ \$\( \text{C(7)} \) 3693(3) 3266(6) 607(2) 4.6 \\ \$\( \text{C(8)} \) 4353(2) 3972(5) 1661(2) 3.9 \\ \$\( \text{C(9)} \) 5370(2) -592(5) 1670(2) 4.3 \\ \$\( \text{C(10)} \) 5008(2) -360(5) 592(2) 4.1 \\ \$\( \text{C(11)} \) 4035(2) 1374(5) 1407(2) 2.9 \\ \$\( \text{C(11)} \) 4035(2) -146(6) 1467(3) 5.3 \\ \$\( \text{C(14)} \) 4042(3) -421(6) 1864(2) 5.3 \\ \$\( \text{C(15)} \) 4334(2) 523(5) 1834(2) 3.8 \\ \$\( \text{C(17)} \) 4347(2) -1976(5) 1117(2) 3.5 \\ \$\( \text{C(18)} \) 3594(2) -4417(5) 453(2) 3.7 \\ \$\( \text{C(20)} \) 3904(2) -456(5) 472(2) 3.0 \\ \$\( \text{C(21)} \) 6676(2) 9185(5) 6036(2) 3.5 \\ \$\( \text{C(22)} \) 6676(2) 9185(5) 6036(2) 3.5 \\ \$\( \text{C(22)} \) 6676(2) 9185(5) 6036(2) 3.5 \\ \$\( \text{C(22)} \) 6676(2) 9185(5) 6763(2) 4.0 \\ \$\( \text{C(27)} \) 7436(2) 7024(5) 6347(2) 2.7 \\ \$\( \text{C(28)} \) 7136(2) 6443(5) 586(2) 3.8 \\ \$\( \text{C(27)} \) 7436(2) 7024(5) 6347(2) 2.7 \\ \$\( \text{C(28)} \) 7136(2) 6443(5) 586(2) 3.8 \\ \$\( \text{C(27)} \) 7436(2) 6097(2) 5134(6) 6097(2) 4.8 \\ \$\( \text{C(27)} \) 7436(2) 6097(2) 5134(6) 5787(2) 4.7 \\ \$\( \text{C(30)} \) 7154(2) 4318(6) 6097(3) 5.0 \\ \$\( \text{C(31)} \) 7586(2) 6158(5) 5781(2) 3.4 \\ \$\( \text{C(33)} \) 7586(2) 6158(5) 5781(2) 3.4 \\ \$\( \text{C(34)} \) 6392(2) 9978(5) 526(2) 2.9 \\ \$\( \text{C(34)} \) 6392(2) 897(6) 7442(2) 3.0 \\ \$\( \text{C(34)} \) 7442(2) 10528(5) 5781(2) 3.4 \\ \$\( \text{C(34)} \) 7442(2) 10528(5) 5787(2) 3.9 \\ \$\( \text{C(34)} \) 7436(2) 8901(6) 7418(2) 5.2 \\ \$ |       |           | 2618(1)   |           |             |
| S(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       | 5588.5(4) | 2391(1)   |           |             |
| S(4)         4787.1(5)         4636(1)         918.9(5)         3.2           N(1)         6288(1)         2553(4)         2205(2)         3.1           N(2)         4350(2)         5009(4)         -105(2)         3.6           C(1)         5829(2)         2541(5)         1851(2)         2.8           C(2)         6472(2)         2679(6)         2751(2)         4.2           C(3)         6635(2)         2491(6)         2059(2)         4.3           C(4)         4509(2)         4192(5)         291(2)         2.8           C(5)         4129(2)         4552(6)         -633(2)         4.8           C(6)         4396(3)         6436(6)         -13(2)         5.1           C(7)         3693(3)         3266(6)         607(2)         4.6           C(8)         4353(2)         3972(5)         1661(2)         3.9           C(9)         5370(2)         -592(5)         1670(2)         4.3           C(10)         5008(2)         -360(5)         592(2)         4.1           C(11)         4035(2)         1374(5)         1407(2)         2.9           C(12)         3553(2)         946(6)         1188(2)         4.1 <td></td> <td></td> <td>2506(1)</td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |           | 2506(1)   |           |             |
| N(1) 6288(1) 2553(4) 2205(2) 3.1 N(2) 4350(2) 5009(4) -105(2) 3.6 C(1) 5829(2) 2541(5) 1851(2) 2.8 C(2) 6472(2) 2679(6) 2751(2) 4.2 C(3) 6635(2) 2491(6) 2059(2) 4.3 C(4) 4509(2) 4192(5) 291(2) 2.8 C(5) 4129(2) 4552(6) -633(2) 4.8 C(6) 4396(3) 6436(6) -13(2) 5.1 C(7) 3693(3) 3266(6) 607(2) 4.6 C(8) 4353(2) 3972(5) 1661(2) 3.9 C(9) 5370(2) -592(5) 1670(2) 4.3 C(10) 5008(2) -360(5) 592(2) 4.1 C(11) 4035(2) 1374(5) 1407(2) 2.9 C(12) 3553(2) 946(6) 1188(2) 4.1 C(13) 3562(2) -146(6) 1467(3) 5.3 C(14) 4042(3) -421(6) 1864(2) 5.3 C(15) 4334(2) 523(5) 1834(2) 3.8 C(16) 4377(2) -779(5) 889(2) 2.8 C(17) 4347(2) -1976(5) 1117(2) 3.5 C(18) 3860(2) -2342(5) 844(2) 3.8 C(19) 3594(2) -1417(5) 453(2) 3.7 C(20) 3904(2) -456(5) 472(2) 3.0 C(21) 7152(2) 9389(5) 6438(2) 2.8 C(22) 6676(2) 9185(5) 6036(2) 3.5 C(23) 6302(2) 9933(6) 5962(2) 4.7 C(24) 6382(2) 11167(6) 6706(3) 5.2 C(26) 7215(2) 10428(5) 6763(2) 4.0 C(27) 7436(2) 7024(5) 6347(2) 2.7 C(28) 7136(2) 6443(5) 5862(2) 3.8 C(29) 6997(2) 5134(6) 6297(2) 4.8 C(30) 7154(2) 4318(6) 6299(3) 5.0 C(31) 7442(2) 10528(5) 6763(2) 4.0 C(31) 7442(2) 10528(5) 6758(2) 3.8 C(33) 7588(2) 9231(4) 5950(2) 2.4 C(34) 7442(2) 10528(5) 5781(2) 3.4 C(35) 7444(2) 11076(5) 5377(2) 3.9 C(36) 7585(2) 10357(5) 5104(2) 3.4 C(37) 7739(2) 9078(5) 5262(2) 2.9 C(38) 7745(2) 8548(5) 5683(2) 2.7 C(39) 8111(2) 8770(5) 6974(2) 3.0 C(40) 8525(2) 8791(5) 6974(2) 3.8 C(41) 8976(2) 8991(6) 7418(2) 5.2 C(44) 8172(2) 8819(6) 7457(2) 5.2                                                                                                                                                                                                                                                                                                                                                                              |       |           |           |           |             |
| N(2) 4350(2) 5009(4) -105(2) 3.6<br>C(1) 5829(2) 2541(5) 1851(2) 2.8<br>C(2) 6472(2) 2679(6) 2751(2) 4.2<br>C(3) 6635(2) 2491(6) 2059(2) 4.3<br>C(4) 4509(2) 4192(5) 291(2) 2.8<br>C(5) 4129(2) 4552(6) -633(2) 4.8<br>C(6) 4396(3) 6436(6) -13(2) 5.1<br>C(7) 3693(3) 3266(6) 607(2) 4.6<br>C(8) 4353(2) 3972(5) 1661(2) 3.9<br>C(9) 5370(2) -592(5) 1670(2) 4.3<br>C(10) 5008(2) -360(5) 592(2) 4.1<br>C(11) 4035(2) 1374(5) 1407(2) 2.9<br>C(12) 3553(2) 946(6) 1188(2) 4.1<br>C(13) 3562(2) -146(6) 1467(3) 5.3<br>C(14) 4042(3) -421(6) 1864(2) 5.3<br>C(15) 4334(2) 523(5) 1834(2) 3.8<br>C(16) 4377(2) -779(5) 889(2) 2.8<br>C(17) 4347(2) -1976(5) 1117(2) 3.5<br>C(18) 3860(2) -2342(5) 844(2) 3.8<br>C(19) 3594(2) -1417(5) 453(2) 3.7<br>C(20) 3904(2) -456(5) 472(2) 3.0<br>C(21) 7152(2) 9389(5) 6438(2) 2.8<br>C(22) 6676(2) 9185(5) 6036(2) 3.5<br>C(23) 6302(2) 9933(6) 5962(2) 4.7<br>C(24) 6382(2) 10944(6) 6297(2) 4.8<br>C(25) 6842(2) 11167(6) 6706(3) 5.2<br>C(26) 7215(2) 10428(5) 6763(2) 4.0<br>C(27) 7436(2) 7024(5) 6347(2) 2.7<br>C(28) 7136(2) 6443(5) 5862(2) 3.8<br>C(29) 6997(2) 5134(6) 5787(2) 4.7<br>C(28) 7136(2) 6443(5) 5787(2) 4.7<br>C(28) 7136(2) 6443(5) 5787(2) 4.7<br>C(29) 6997(2) 5134(6) 5787(2) 4.7<br>C(21) 7154(2) 4318(6) 6209(3) 5.0<br>C(31) 7442(2) 4851(6) 6691(3) 5.3<br>C(27) 7586(2) 10428(5) 5781(2) 3.4<br>C(35) 7444(2) 10528(5) 5781(2) 3.4<br>C(36) 7585(2) 10357(5) 5104(2) 3.4<br>C(37) 7739(2) 9078(5) 5262(2) 2.9<br>C(38) 7745(2) 8548(5) 5683(2) 2.7<br>C(39) 8111(2) 8770(5) 6974(2) 3.8<br>C(40) 8525(2) 8791(5) 6974(2) 3.8<br>C(41) 8976(2) 8901(6) 7418(2) 5.2<br>C(44) 8172(2) 8819(6) 7457(2) 5.2<br>C(44) 8172(2) 8819(6) 7457(2) 5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |           |           |           |             |
| C(1) 5829(2) 2541(5) 1851(2) 2.8 C(2) 6472(2) 2679(6) 2751(2) 4.2 C(3) 6635(2) 2491(6) 2059(2) 4.3 C(4) 4509(2) 4192(5) 291(2) 2.8 C(5) 4129(2) 4552(6) -633(2) 4.8 C(6) 4396(3) 6436(6) -13(2) 5.1 C(7) 3693(3) 3266(6) 607(2) 4.6 C(8) 4353(2) 3972(5) 1661(2) 3.9 C(9) 5370(2) -592(5) 1670(2) 4.3 C(10) 5008(2) -360(5) 592(2) 4.1 C(11) 4035(2) 1374(5) 1407(2) 2.9 C(12) 3553(2) 946(6) 1188(2) 4.1 C(13) 3562(2) -146(6) 1467(3) 5.3 C(14) 4042(3) -421(6) 1864(2) 5.3 C(15) 4334(2) 523(5) 1834(2) 3.8 C(16) 4377(2) -779(5) 889(2) 2.8 C(17) 4347(2) -1976(5) 1117(2) 3.5 C(18) 3860(2) -2342(5) 844(2) 3.8 C(19) 3594(2) -1417(5) 453(2) 3.7 C(20) 3904(2) -456(5) 472(2) 3.0 C(21) 7152(2) 9389(5) 6438(2) 2.8 C(22) 6676(2) 9185(5) 6036(2) 3.5 C(23) 6302(2) 9933(6) 5962(2) 4.7 C(24) 6382(2) 10944(6) 6297(2) 4.8 C(25) 6842(2) 11167(6) 6706(3) 5.2 C(26) 7215(2) 10428(5) 6763(2) 4.0 C(27) 7436(2) 7024(5) 6347(2) 2.7 C(28) 7136(2) 6443(5) 5862(2) 3.8 C(29) 6997(2) 5134(6) 5787(2) 4.7 C(30) 7154(2) 4318(6) 6297(3) 4.0 C(31) 7442(2) 4851(6) 6691(3) 5.3 C(32) 7586(2) 6158(5) 6758(2) 3.8 C(33) 7588(2) 9231(4) 5950(2) 2.4 C(34) 7442(2) 10528(5) 5781(2) 3.4 C(35) 7444(2) 11076(5) 5377(2) 3.9 C(38) 7745(2) 8548(5) 5683(2) 2.7 C(39) 8111(2) 8770(5) 6974(2) 3.0 C(40) 8525(2) 8791(5) 6974(2) 3.0 C(41) 8525(2) 8791(5) 6974(2) 3.0 C(41) 8525(2) 8791(5) 6974(2) 3.8 C(41) 8976(2) 8901(6) 7418(2) 5.2 C(42) 6038(2) 8901(6) 7418(2) 5.2 C(44) 8172(2) 8819(6) 7457(2) 4.2                                                                                                                                                                                                                                                                                                          |       |           |           |           |             |
| C(2)         6472(2)         2679(6)         2751(2)         4.2           C(3)         6635(2)         2491(6)         2059(2)         4.3           C(4)         4509(2)         4192(5)         291(2)         2.8           C(5)         4129(2)         4552(6)         -633(2)         4.8           C(6)         4396(3)         6436(6)         -13(2)         5.1           C(7)         3693(3)         3266(6)         607(2)         4.6           C(8)         4353(2)         3972(5)         1661(2)         3.9           C(9)         5370(2)         -592(5)         1661(2)         3.9           C(10)         5008(2)         -360(5)         592(2)         4.1           C(11)         4035(2)         1374(5)         1407(2)         2.9           C(12)         3553(2)         946(6)         1188(2)         4.1           C(13)         3562(2)         -146(6)         1467(3)         5.3           C(14)         4042(3)         -421(6)         1864(2)         5.3           C(15)         4334(2)         523(5)         1834(2)         3.8           C(16)         4377(2)         -779(5)         889(2)         2.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |           |           |           |             |
| C(3) 6635(2) 2491(6) 2059(2) 4.3 C(4) 4509(2) 4192(5) 291(2) 2.8 C(5) 4129(2) 4552(6) -633(2) 4.8 C(6) 4396(3) 6436(6) -13(2) 5.1 C(7) 3693(3) 3266(6) 607(2) 4.6 C(8) 4353(2) 3972(5) 1661(2) 3.9 C(9) 5370(2) -592(5) 1670(2) 4.3 C(10) 5008(2) -360(5) 592(2) 4.1 C(11) 4035(2) 1374(5) 1407(2) 2.9 C(12) 3553(2) 946(6) 1188(2) 4.1 C(13) 3562(2) -146(6) 1467(3) 5.3 C(14) 4042(3) -421(6) 1864(2) 5.3 C(15) 4334(2) 523(5) 1834(2) 3.8 C(16) 4377(2) -779(5) 889(2) 2.8 C(17) 4347(2) -1976(5) 1117(2) 3.5 C(18) 3860(2) -2342(5) 844(2) 3.8 C(19) 3594(2) -1417(5) 453(2) 3.7 C(20) 3904(2) -456(5) 472(2) 3.0 C(21) 7152(2) 9389(5) 6438(2) 2.8 C(22) 6676(2) 9185(5) 6036(2) 3.5 C(23) 6302(2) 9933(6) 5962(2) 4.7 C(24) 6382(2) 10944(6) 6297(2) 4.8 C(25) 6842(2) 11167(6) 6706(3) 5.2 C(26) 7215(2) 10428(5) 6763(2) 4.0 C(27) 7436(2) 7024(5) 6347(2) 2.7 C(28) 7154(2) 4318(6) 6297(2) 4.8 C(29) 6997(2) 5134(6) 5787(2) 4.7 C(30) 7154(2) 4318(6) 6209(3) 5.0 C(31) 7442(2) 4318(6) 6209(3) 5.0 C(31) 7442(2) 4318(6) 6209(3) 5.0 C(31) 7442(2) 4851(6) 6691(3) 5.3 C(32) 7586(2) 6158(5) 6758(2) 3.8 C(33) 7588(2) 9231(4) 5950(2) 2.4 C(34) 7442(2) 4851(6) 6691(3) 5.3 C(35) 7444(2) 10528(5) 5781(2) 3.4 C(36) 7585(2) 10357(5) 5104(2) 3.4 C(37) 7739(2) 9078(5) 5262(2) 2.9 C(38) 7745(2) 8548(5) 5683(2) 2.7 C(39) 8111(2) 8770(5) 6974(2) 3.0 C(40) 8525(2) 8791(5) 6974(2) 3.0 C(41) 876(2) 8901(6) 7487(2) 5.2 C(43) 8628(2) 891(6) 7908(2) 5.7 C(44) 8172(2) 8819(6) 7457(2) 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |           | 2679(6)   | 2751(2)   |             |
| C(4) 4509(2) 4192(5) 291(2) 2.8 C(5) 4129(2) 4552(6) -633(2) 4.8 C(6) 4396(3) 6436(6) -13(2) 5.1 C(7) 3693(3) 3266(6) 607(2) 4.6 C(8) 4353(2) 3972(5) 1661(2) 3.9 C(9) 5370(2) -592(5) 1670(2) 4.3 C(10) 5008(2) -360(5) 592(2) 4.1 C(11) 4035(2) 1374(5) 1407(2) 2.9 C(12) 3553(2) 946(6) 1188(2) 4.1 C(13) 3562(2) -146(6) 1467(3) 5.3 C(14) 4042(3) -421(6) 1864(2) 5.3 C(15) 4334(2) 523(5) 1834(2) 3.8 C(16) 4377(2) -779(5) 889(2) 2.8 C(17) 4347(2) -1976(5) 1117(2) 3.5 C(18) 3860(2) -2342(5) 844(2) 3.8 C(19) 3594(2) -1417(5) 453(2) 3.7 C(20) 3904(2) -456(5) 472(2) 3.0 C(21) 7152(2) 9389(5) 6438(2) 2.8 C(22) 6676(2) 9185(5) 6036(2) 3.5 C(23) 6302(2) 9933(6) 5962(2) 4.7 C(24) 6382(2) 10944(6) 6297(2) 4.8 C(25) 6842(2) 11167(6) 6706(3) 5.2 C(26) 7215(2) 10428(5) 6763(2) 4.0 C(27) 7436(2) 7024(5) 6347(2) 2.7 C(28) 7136(2) 6443(5) 5862(2) 3.8 C(29) 6997(2) 5134(6) 6706(3) 5.2 C(30) 7154(2) 4318(6) 6209(3) 5.0 C(31) 7442(2) 4318(6) 6209(3) 5.0 C(31) 7442(2) 4851(6) 6691(3) 5.3 C(32) 7586(2) 6158(5) 6758(2) 3.8 C(33) 7588(2) 9231(4) 5950(2) 2.4 C(34) 7442(2) 10528(5) 5781(2) 3.4 C(35) 7745(2) 8548(5) 5683(2) 2.7 C(38) 7739(2) 9078(5) 5262(2) 2.9 C(38) 7745(2) 8548(5) 5683(2) 2.7 C(39) 8111(2) 8770(5) 6974(2) 3.0 C(40) 8525(2) 8791(5) 6974(2) 3.8 C(41) 8976(2) 8901(6) 7418(2) 5.2 C(43) 8628(2) 8932(6) 7908(2) 5.7 C(44) 8172(2) 8819(6) 7457(2) 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |           | 2491(6)   | 2059(2)   |             |
| C(5) 4129(2) 4552(6) -633(2) 4.8 C(6) 4396(3) 6436(6) -13(2) 5.1 C(7) 3693(3) 3266(6) 607(2) 4.6 C(8) 4353(2) 3972(5) 1661(2) 3.9 C(9) 5370(2) -592(5) 1670(2) 4.3 C(10) 5008(2) -360(5) 592(2) 4.1 C(11) 4035(2) 1374(5) 1407(2) 2.9 C(12) 3553(2) 946(6) 1188(2) 4.1 C(13) 3562(2) -146(6) 1467(3) 5.3 C(14) 4042(3) -421(6) 1864(2) 5.3 C(15) 4334(2) 523(5) 1834(2) 3.8 C(16) 4377(2) -779(5) 889(2) 2.8 C(17) 4347(2) -1976(5) 1117(2) 3.5 C(18) 3860(2) -2342(5) 844(2) 3.8 C(19) 3594(2) -1417(5) 453(2) 3.7 C(20) 3904(2) -456(5) 472(2) 3.0 C(21) 7152(2) 9389(5) 6438(2) 2.8 C(22) 6676(2) 9185(5) 6036(2) 3.5 C(23) 6302(2) 9933(6) 5962(2) 4.7 C(24) 6382(2) 10944(6) 6297(2) 4.8 C(25) 6842(2) 11167(6) 6706(3) 5.2 C(26) 7215(2) 10428(5) 6763(2) 4.0 C(27) 7436(2) 7024(5) 6347(2) 2.7 C(28) 7136(2) 6443(5) 5862(2) 3.8 C(30) 7154(2) 4318(6) 6209(3) 5.0 C(31) 7442(2) 4851(6) 6691(3) 5.3 C(32) 7586(2) 6158(5) 6758(2) 3.8 C(33) 7588(2) 9231(4) 5950(2) 2.4 C(34) 7444(2) 10528(5) 5787(2) 4.7 C(36) 7585(2) 10357(5) 5104(2) 3.4 C(37) 7739(2) 9078(5) 5262(2) 2.9 C(38) 7745(2) 8548(5) 5683(2) 2.7 C(39) 8111(2) 8770(5) 6974(2) 3.0 C(40) 8525(2) 8791(5) 6974(2) 3.8 C(41) 8976(2) 891(6) 7457(2) 4.2 C(43) 8628(2) 8932(6) 7908(2) 5.2 C(44) 8172(2) 8819(6) 7457(2) 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | 4509(2)   | 4192(5)   |           |             |
| C(6)         4396(3)         6436(6)         -13(2)         5.1           C(7)         3693(3)         3266(6)         607(2)         4.6           C(8)         4353(2)         3972(5)         1661(2)         3.9           C(9)         5370(2)         -592(5)         1670(2)         4.3           C(10)         5008(2)         -360(5)         592(2)         4.1           C(11)         4035(2)         1374(5)         1407(2)         2.9           C(12)         3553(2)         946(6)         1188(2)         4.1           C(13)         3562(2)         -146(6)         1467(3)         5.3           C(14)         4042(3)         -421(6)         1864(2)         5.3           C(15)         4334(2)         523(5)         1834(2)         3.8           C(16)         4377(2)         -779(5)         889(2)         2.8           C(17)         4347(2)         -1976(5)         1117(2)         3.5           C(18)         3860(2)         -2342(5)         844(2)         3.8           C(19)         3594(2)         -1417(5)         453(2)         3.7           C(20)         3904(2)         -456(5)         472(2)         3.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | 4129(2)   | 4552(6)   | -633(2)   |             |
| C(7)         3693(3)         3266(6)         607(2)         4.6           C(8)         4353(2)         3972(5)         1661(2)         3.9           C(9)         5370(2)         -592(5)         1670(2)         4.3           C(10)         5008(2)         -360(5)         592(2)         4.1           C(11)         4035(2)         1374(5)         1407(2)         2.9           C(12)         3553(2)         946(6)         1188(2)         4.1           C(13)         3562(2)         -146(6)         1467(3)         5.3           C(14)         4042(3)         -421(6)         1864(2)         5.3           C(15)         4334(2)         523(5)         1834(2)         3.8           C(16)         4377(2)         -779(5)         889(2)         2.8           C(17)         4347(2)         -1976(5)         1117(2)         3.5           C(18)         3860(2)         -2342(5)         844(2)         3.8           C(19)         3594(2)         -1417(5)         453(2)         3.7           C(20)         3904(2)         -4417(5)         453(2)         3.7           C(21)         7152(2)         9389(5)         6438(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |           |           |           |             |
| C(8)         4353(2)         3972(5)         1661(2)         3.9           C(9)         5370(2)         -592(5)         1670(2)         4.3           C(10)         5008(2)         -360(5)         592(2)         4.1           C(11)         4035(2)         1374(5)         1407(2)         2.9           C(12)         3553(2)         946(6)         1188(2)         4.1           C(13)         3562(2)         -146(6)         1467(3)         5.3           C(14)         4042(3)         -421(6)         1864(2)         5.3           C(15)         4334(2)         523(5)         1834(2)         3.8           C(16)         4377(2)         -779(5)         889(2)         2.8           C(17)         4347(2)         -1976(5)         1117(2)         3.5           C(18)         3860(2)         -2342(5)         844(2)         3.8           C(19)         3594(2)         -1417(5)         453(2)         3.7           C(20)         3904(2)         -456(5)         472(2)         3.0           C(21)         7152(2)         9389(5)         6438(2)         2.8           C(22)         6676(2)         9185(5)         6036(2) <th< td=""><td></td><td></td><td></td><td></td><td></td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |           |           |           |             |
| C(9)         5370(2)         -592(5)         1670(2)         4.3           C(10)         5008(2)         -360(5)         592(2)         4.1           C(11)         4035(2)         1374(5)         1407(2)         2.9           C(12)         3553(2)         946(6)         1188(2)         4.1           C(13)         3562(2)         -146(6)         1467(3)         5.3           C(14)         4042(3)         -421(6)         1864(2)         5.3           C(14)         4042(3)         -421(6)         1864(2)         5.3           C(15)         4334(2)         523(5)         1834(2)         3.8           C(16)         4377(2)         -779(5)         889(2)         2.8           C(17)         4347(2)         -1976(5)         1117(2)         3.5           C(18)         3860(2)         -2342(5)         844(2)         3.8           C(19)         3594(2)         -1417(5)         453(2)         3.7           C(20)         3904(2)         -456(5)         472(2)         3.0           C(21)         7152(2)         9389(5)         6438(2)         2.8           C(22)         6676(2)         9185(5)         6036(2) <t< td=""><td></td><td></td><td></td><td></td><td></td></t<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |           |           |           |             |
| C(10)         5008(2)         -360(5)         592(2)         4.1           C(11)         4035(2)         1374(5)         1407(2)         2.9           C(12)         3553(2)         946(6)         1188(2)         4.1           C(13)         3562(2)         -146(6)         1467(3)         5.3           C(14)         4042(3)         -421(6)         1864(2)         5.3           C(15)         4334(2)         523(5)         1834(2)         3.8           C(16)         4377(2)         -779(5)         889(2)         2.8           C(17)         4347(2)         -1976(5)         1117(2)         3.5           C(18)         3860(2)         -2342(5)         844(2)         3.8           C(19)         3594(2)         -1417(5)         453(2)         3.7           C(20)         3904(2)         -456(5)         472(2)         3.0           C(21)         7152(2)         9389(5)         6438(2)         2.8           C(22)         6676(2)         9185(5)         6036(2)         3.5           C(23)         6302(2)         9933(6)         5962(2)         4.7           C(24)         6382(2)         11074(6)         6763(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |           | -592(5)   | 1670(2)   |             |
| C(11) 4035(2) 1374(5) 1407(2) 2.9 C(12) 3553(2) 946(6) 1188(2) 4.1 C(13) 3562(2) -146(6) 1467(3) 5.3 C(14) 4042(3) -421(6) 1864(2) 5.3 C(15) 4334(2) 523(5) 1834(2) 3.8 C(16) 4377(2) -779(5) 889(2) 2.8 C(17) 4347(2) -1976(5) 1117(2) 3.5 C(18) 3860(2) -2342(5) 844(2) 3.8 C(19) 3594(2) -1417(5) 453(2) 3.7 C(20) 3904(2) -456(5) 472(2) 3.0 C(21) 7152(2) 9389(5) 6438(2) 2.8 C(22) 6676(2) 9185(5) 6036(2) 3.5 C(23) 6302(2) 9933(6) 5962(2) 4.7 C(24) 6382(2) 10944(6) 6297(2) 4.8 C(25) 6842(2) 11167(6) 6706(3) 5.2 C(26) 7215(2) 10428(5) 6736(2) 4.0 C(27) 7436(2) 7024(5) 6347(2) 2.7 C(28) 7136(2) 6443(5) 5862(2) 3.8 C(29) 6997(2) 5134(6) 5787(2) 4.7 C(30) 7154(2) 4318(6) 6209(3) 5.0 C(31) 7442(2) 4851(6) 6691(3) 5.3 C(32) 7586(2) 6158(5) 6758(2) 3.8 C(33) 7588(2) 9231(4) 5950(2) 2.4 C(34) 7442(2) 10528(5) 5781(2) 3.4 C(35) 7444(2) 11076(5) 5377(2) 3.9 C(36) 7585(2) 10357(5) 5104(2) 3.4 C(37) 7739(2) 9078(5) 5262(2) 2.9 C(38) 7745(2) 8548(5) 5683(2) 2.7 C(39) 8111(2) 8770(5) 6974(2) 3.8 C(41) 8976(2) 8901(6) 7418(2) 5.2 C(43) 8628(2) 8932(6) 7908(2) 5.2 C(44) 8172(2) 8819(6) 7457(2) 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       | 5008(2)   | -360(5)   |           |             |
| C(12)         3553(2)         946(6)         1188(2)         4.1           C(13)         3562(2)         -146(6)         1467(3)         5.3           C(14)         4042(3)         -421(6)         1864(2)         5.3           C(15)         4334(2)         523(5)         1834(2)         3.8           C(16)         4377(2)         -779(5)         889(2)         2.8           C(17)         4347(2)         -1976(5)         1117(2)         3.5           C(18)         3860(2)         -2342(5)         844(2)         3.8           C(19)         3594(2)         -1417(5)         453(2)         3.7           C(20)         3904(2)         -456(5)         472(2)         3.0           C(21)         7152(2)         9389(5)         6438(2)         2.8           C(20)         3904(2)         -456(5)         472(2)         3.0           C(21)         7152(2)         9389(5)         6438(2)         2.8           C(22)         6676(2)         9185(5)         6036(2)         3.5           C(23)         6302(2)         9933(6)         5962(2)         4.7           C(24)         6382(2)         11167(6)         6706(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |           | 1374(5)   |           |             |
| C(13)         3562(2)         -146(6)         1467(3)         5.3           C(14)         4042(3)         -421(6)         1864(2)         5.3           C(15)         4334(2)         523(5)         1834(2)         3.8           C(16)         4377(2)         -779(5)         889(2)         2.8           C(17)         4347(2)         -1976(5)         1117(2)         3.5           C(18)         3860(2)         -2342(5)         844(2)         3.8           C(19)         3594(2)         -1417(5)         453(2)         3.7           C(20)         3904(2)         -456(5)         472(2)         3.0           C(21)         7152(2)         9389(5)         6438(2)         2.8           C(20)         3904(2)         -456(5)         472(2)         3.0           C(21)         7152(2)         9389(5)         6438(2)         2.8           C(22)         6676(2)         9185(5)         6036(2)         3.5           C(23)         6302(2)         9933(6)         5962(2)         4.7           C(24)         6382(2)         11167(6)         6706(3)         5.2           C(24)         6382(2)         1042(5)         6763(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |       |           |           | 1188(2)   |             |
| C(14)         4042(3)         -421(6)         1864(2)         5.3           C(15)         4334(2)         523(5)         1834(2)         3.8           C(16)         4377(2)         -779(5)         889(2)         2.8           C(17)         4347(2)         -1976(5)         1117(2)         3.5           C(18)         3860(2)         -2342(5)         844(2)         3.8           C(19)         3594(2)         -1417(5)         453(2)         3.7           C(20)         3904(2)         -456(5)         472(2)         3.0           C(21)         7152(2)         9389(5)         6438(2)         2.8           C(22)         6676(2)         9185(5)         6036(2)         3.5           C(23)         6302(2)         9933(6)         5962(2)         4.7           C(24)         6382(2)         10944(6)         6297(2)         4.8           C(25)         6842(2)         11167(6)         6706(3)         5.2           C(26)         7215(2)         10428(5)         6763(2)         4.0           C(27)         7436(2)         7024(5)         6347(2)         2.7           C(28)         7136(2)         6443(5)         5862(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | 3562(2)   | -146(6)   |           |             |
| C(15)         4334(2)         523(5)         1834(2)         3.8           C(16)         4377(2)         -779(5)         889(2)         2.8           C(17)         4347(2)         -1976(5)         1117(2)         3.5           C(18)         3860(2)         -2342(5)         844(2)         3.8           C(19)         3594(2)         -1417(5)         453(2)         3.7           C(20)         3904(2)         -456(5)         472(2)         3.0           C(21)         7152(2)         9389(5)         6438(2)         2.8           C(22)         6676(2)         9185(5)         6036(2)         3.5           C(23)         6302(2)         9933(6)         5962(2)         4.7           C(24)         6382(2)         10944(6)         6297(2)         4.8           C(25)         6842(2)         11167(6)         6706(3)         5.2           C(26)         7215(2)         10428(5)         6763(2)         4.0           C(27)         7436(2)         7024(5)         6347(2)         2.7           C(28)         7136(2)         6443(5)         5862(2)         3.8           C(29)         6997(2)         5134(6)         5787(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |       | 4042(2)   |           | 1864(2)   |             |
| C(16)         4377(2)         -779(5)         889(2)         2.8           C(17)         4347(2)         -1976(5)         1117(2)         3.5           C(18)         3860(2)         -2342(5)         844(2)         3.8           C(19)         3594(2)         -1417(5)         453(2)         3.7           C(20)         3904(2)         -456(5)         472(2)         3.0           C(21)         7152(2)         9389(5)         6438(2)         2.8           C(22)         6676(2)         9185(5)         6036(2)         3.5           C(23)         6302(2)         9933(6)         5962(2)         4.7           C(24)         6382(2)         10944(6)         6297(2)         4.8           C(25)         6842(2)         11167(6)         6706(3)         5.2           C(26)         7215(2)         10428(5)         6763(2)         4.0           C(27)         7436(2)         7024(5)         6347(2)         2.7           C(28)         7136(2)         6443(5)         5862(2)         3.8           C(29)         6997(2)         5134(6)         5787(2)         4.7           C(30)         7154(2)         4318(6)         6209(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |           |           |           |             |
| C(17)         4347(2)         -1976(5)         1117(2)         3.5           C(18)         3860(2)         -2342(5)         844(2)         3.8           C(19)         3594(2)         -1417(5)         453(2)         3.7           C(20)         3904(2)         -456(5)         472(2)         3.0           C(21)         7152(2)         9389(5)         6438(2)         2.8           C(22)         6676(2)         9185(5)         6036(2)         3.5           C(23)         6302(2)         9933(6)         5962(2)         4.7           C(24)         6382(2)         10944(6)         6297(2)         4.8           C(25)         6842(2)         11167(6)         6706(3)         5.2           C(26)         7215(2)         10428(5)         6763(2)         4.0           C(27)         7436(2)         7024(5)         6347(2)         2.7           C(28)         7136(2)         6443(5)         5862(2)         3.8           C(29)         6997(2)         5134(6)         5787(2)         4.7           C(30)         7154(2)         4318(6)         6209(3)         5.0           C(31)         7442(2)         4851(6)         6691(3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       | 4334(2)   | -779(5)   |           |             |
| C(18)         3860(2)         -2342(5)         844(2)         3.8           C(19)         3594(2)         -1417(5)         453(2)         3.7           C(20)         3904(2)         -456(5)         472(2)         3.0           C(21)         7152(2)         9389(5)         6438(2)         2.8           C(22)         6676(2)         9185(5)         6036(2)         3.5           C(23)         6302(2)         9933(6)         5962(2)         4.7           C(24)         6382(2)         10944(6)         6297(2)         4.8           C(25)         6842(2)         11167(6)         6706(3)         5.2           C(26)         7215(2)         10428(5)         6763(2)         4.0           C(27)         7436(2)         7024(5)         6347(2)         2.7           C(28)         7136(2)         6443(5)         5862(2)         3.8           C(29)         6997(2)         5134(6)         5787(2)         4.7           C(30)         7154(2)         4318(6)         6209(3)         5.0           C(31)         7442(2)         4851(6)         6691(3)         5.3           C(32)         7586(2)         6158(5)         6758(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |           |           |           |             |
| C(19)         3594(2)         -1417(5)         453(2)         3.7           C(20)         3904(2)         -456(5)         472(2)         3.0           C(21)         7152(2)         9389(5)         6438(2)         2.8           C(22)         6676(2)         9185(5)         6036(2)         3.5           C(23)         6302(2)         9933(6)         5962(2)         4.7           C(24)         6382(2)         10944(6)         6297(2)         4.8           C(25)         6842(2)         11167(6)         6706(3)         5.2           C(26)         7215(2)         10428(5)         6763(2)         4.0           C(27)         7436(2)         7024(5)         6347(2)         2.7           C(28)         7136(2)         6443(5)         5862(2)         3.8           C(29)         6997(2)         5134(6)         5787(2)         4.7           C(30)         7154(2)         4318(6)         6209(3)         5.0           C(31)         7442(2)         4851(6)         6691(3)         5.3           C(32)         7586(2)         6158(5)         6758(2)         3.8           C(33)         7588(2)         9231(4)         5950(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | 3860(2)   |           |           |             |
| C(20)         3904(2)         -456(5)         472(2)         3.0           C(21)         7152(2)         9389(5)         6438(2)         2.8           C(22)         6676(2)         9185(5)         6036(2)         3.5           C(23)         6302(2)         9933(6)         5962(2)         4.7           C(24)         6382(2)         10944(6)         6297(2)         4.8           C(25)         6842(2)         11167(6)         6706(3)         5.2           C(26)         7215(2)         10428(5)         6763(2)         4.0           C(27)         7436(2)         7024(5)         6347(2)         2.7           C(28)         7136(2)         6443(5)         5862(2)         3.8           C(29)         6997(2)         5134(6)         5787(2)         4.7           C(30)         7154(2)         4318(6)         6209(3)         5.0           C(31)         7442(2)         4851(6)         6691(3)         5.3           C(32)         7586(2)         6158(5)         6758(2)         3.8           C(33)         7588(2)         9231(4)         5950(2)         2.4           C(34)         7442(2)         10528(5)         5781(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |           |           |           |             |
| C(21)         7152(2)         9389(5)         6438(2)         2.8           C(22)         6676(2)         9185(5)         6036(2)         3.5           C(23)         6302(2)         9933(6)         5962(2)         4.7           C(24)         6382(2)         10944(6)         6297(2)         4.8           C(25)         6842(2)         11167(6)         6706(3)         5.2           C(26)         7215(2)         10428(5)         6763(2)         4.0           C(27)         7436(2)         7024(5)         6347(2)         2.7           C(28)         7136(2)         6443(5)         5862(2)         3.8           C(29)         6997(2)         5134(6)         5787(2)         4.7           C(30)         7154(2)         4318(6)         6209(3)         5.0           C(31)         7442(2)         4318(6)         6209(3)         5.0           C(31)         7442(2)         4851(6)         6691(3)         5.3           C(32)         7586(2)         6158(5)         6758(2)         3.8           C(33)         7588(2)         9231(4)         5950(2)         2.4           C(34)         7442(2)         10528(5)         5781(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |           |           |           |             |
| C(22)         6676(2)         9185(5)         6036(2)         3.5           C(23)         6302(2)         9933(6)         5962(2)         4.7           C(24)         6382(2)         10944(6)         6297(2)         4.8           C(25)         6842(2)         11167(6)         6706(3)         5.2           C(26)         7215(2)         10428(5)         6763(2)         4.0           C(27)         7436(2)         7024(5)         6347(2)         2.7           C(28)         7136(2)         6443(5)         5862(2)         3.8           C(29)         6997(2)         5134(6)         5787(2)         4.7           C(30)         7154(2)         4318(6)         6209(3)         5.0           C(31)         7442(2)         4851(6)         6691(3)         5.3           C(32)         7586(2)         6158(5)         6758(2)         3.8           C(33)         7588(2)         9231(4)         5950(2)         2.4           C(34)         7442(2)         10528(5)         5781(2)         3.4           C(35)         7444(2)         11076(5)         5377(2)         3.9           C(36)         7585(2)         10357(5)         5104(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |           |           |           |             |
| C(23)         6302(2)         9933(6)         5962(2)         4.7           C(24)         6382(2)         10944(6)         6297(2)         4.8           C(25)         6842(2)         11167(6)         6706(3)         5.2           C(26)         7215(2)         10428(5)         6763(2)         4.0           C(27)         7436(2)         7024(5)         6347(2)         2.7           C(28)         7136(2)         6443(5)         5862(2)         3.8           C(29)         6997(2)         5134(6)         5787(2)         4.7           C(30)         7154(2)         4318(6)         6209(3)         5.0           C(31)         7442(2)         4318(6)         6209(3)         5.0           C(31)         7442(2)         4851(6)         6691(3)         5.3           C(32)         7586(2)         6158(5)         6758(2)         3.8           C(33)         7588(2)         9231(4)         5950(2)         2.4           C(34)         7442(2)         10528(5)         5781(2)         3.4           C(35)         7444(2)         11076(5)         5377(2)         3.9           C(36)         7585(2)         10357(5)         5104(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |           | 0185(5)   |           |             |
| C(24)         6382(2)         10944(6)         6297(2)         4.8           C(25)         6842(2)         11167(6)         6706(3)         5.2           C(26)         7215(2)         10428(5)         6763(2)         4.0           C(27)         7436(2)         7024(5)         6347(2)         2.7           C(28)         7136(2)         6443(5)         5862(2)         3.8           C(29)         6997(2)         5134(6)         5787(2)         4.7           C(30)         7154(2)         4318(6)         6209(3)         5.0           C(31)         7442(2)         4851(6)         6691(3)         5.3           C(32)         7586(2)         6158(5)         6758(2)         3.8           C(33)         7588(2)         9231(4)         5950(2)         2.4           C(34)         7442(2)         10528(5)         5781(2)         3.4           C(35)         7444(2)         11076(5)         5377(2)         3.9           C(36)         7585(2)         10357(5)         5104(2)         3.4           C(37)         7739(2)         9078(5)         5262(2)         2.9           C(38)         7745(2)         8548(5)         5683(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |           | 0033(6)   |           |             |
| C(25)         6842(2)         11167(6)         6706(3)         5.2           C(26)         7215(2)         10428(5)         6763(2)         4.0           C(27)         7436(2)         7024(5)         6347(2)         2.7           C(28)         7136(2)         6443(5)         5862(2)         3.8           C(29)         6997(2)         5134(6)         5787(2)         4.7           C(30)         7154(2)         4318(6)         6209(3)         5.0           C(31)         7442(2)         4851(6)         6691(3)         5.3           C(32)         7586(2)         6158(5)         6758(2)         3.8           C(33)         7588(2)         9231(4)         5950(2)         2.4           C(34)         7442(2)         10528(5)         5781(2)         3.4           C(35)         7444(2)         11076(5)         5377(2)         3.9           C(36)         7585(2)         10357(5)         5104(2)         3.4           C(37)         7739(2)         9078(5)         5262(2)         2.9           C(38)         7745(2)         8548(5)         5683(2)         2.7           C(39)         8111(2)         8770(5)         6974(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |           |           |           |             |
| C(26)         7215(2)         10428(5)         6763(2)         4.0           C(27)         7436(2)         7024(5)         6347(2)         2.7           C(28)         7136(2)         6443(5)         5862(2)         3.8           C(29)         6997(2)         5134(6)         5787(2)         4.7           C(30)         7154(2)         4318(6)         6209(3)         5.0           C(31)         7442(2)         4851(6)         6691(3)         5.3           C(32)         7586(2)         6158(5)         6758(2)         3.8           C(33)         7588(2)         9231(4)         5950(2)         2.4           C(34)         7442(2)         10528(5)         5781(2)         3.4           C(35)         7444(2)         11076(5)         5377(2)         3.9           C(36)         7585(2)         10357(5)         5104(2)         3.4           C(37)         7739(2)         9078(5)         5262(2)         2.9           C(38)         7745(2)         8548(5)         5683(2)         2.7           C(39)         8111(2)         8770(5)         6974(2)         3.0           C(40)         8525(2)         8791(5)         6974(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |           |           |           |             |
| C(27)         7436(2)         7024(5)         6347(2)         2.7           C(28)         7136(2)         6443(5)         5862(2)         3.8           C(29)         6997(2)         5134(6)         5787(2)         4.7           C(30)         7154(2)         4318(6)         6209(3)         5.0           C(31)         7442(2)         4851(6)         6691(3)         5.3           C(32)         7586(2)         6158(5)         6758(2)         3.8           C(33)         7588(2)         9231(4)         5950(2)         2.4           C(34)         7442(2)         10528(5)         5781(2)         3.4           C(35)         7444(2)         11076(5)         5377(2)         3.9           C(36)         7585(2)         10357(5)         5104(2)         3.4           C(37)         7739(2)         9078(5)         5262(2)         2.9           C(38)         7745(2)         8548(5)         5683(2)         2.7           C(39)         8111(2)         8770(5)         6974(2)         3.0           C(40)         8525(2)         8791(5)         6974(2)         3.8           C(41)         8976(2)         8901(6)         7418(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |           |           |           |             |
| C(28)         7136(2)         6443(5)         5862(2)         3.8           C(29)         6997(2)         5134(6)         5787(2)         4.7           C(30)         7154(2)         4318(6)         6209(3)         5.0           C(31)         7442(2)         4851(6)         6691(3)         5.3           C(32)         7586(2)         6158(5)         6758(2)         3.8           C(33)         7588(2)         9231(4)         5950(2)         2.4           C(34)         7442(2)         10528(5)         5781(2)         3.4           C(35)         7444(2)         11076(5)         5377(2)         3.9           C(36)         7585(2)         10357(5)         5104(2)         3.4           C(37)         7739(2)         9078(5)         5262(2)         2.9           C(38)         7745(2)         8548(5)         5683(2)         2.7           C(39)         8111(2)         8770(5)         6974(2)         3.0           C(40)         8525(2)         8791(5)         6974(2)         3.8           C(41)         8976(2)         8901(6)         7418(2)         5.2           C(42)         9023(2)         8976(6)         7893(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | C(20) |           |           |           |             |
| C(29)         6997(2)         5134(6)         5787(2)         4.7           C(30)         7154(2)         4318(6)         6209(3)         5.0           C(31)         7442(2)         4851(6)         6691(3)         5.3           C(32)         7586(2)         6158(5)         6758(2)         3.8           C(33)         7588(2)         9231(4)         5950(2)         2.4           C(34)         7442(2)         10528(5)         5781(2)         3.4           C(35)         7444(2)         11076(5)         5377(2)         3.9           C(36)         7585(2)         10357(5)         5104(2)         3.4           C(37)         7739(2)         9078(5)         5262(2)         2.9           C(38)         7745(2)         8548(5)         5683(2)         2.7           C(39)         8111(2)         8770(5)         6974(2)         3.0           C(40)         8525(2)         8791(5)         6974(2)         3.8           C(41)         8976(2)         8901(6)         7418(2)         5.2           C(42)         9023(2)         8976(6)         7893(2)         5.7           C(43)         8628(2)         8932(6)         7908(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |           |           |           |             |
| C(30)         7154(2)         4318(6)         6209(3)         5.0           C(31)         7442(2)         4851(6)         6691(3)         5.3           C(32)         7586(2)         6158(5)         6758(2)         3.8           C(33)         7588(2)         9231(4)         5950(2)         2.4           C(34)         7442(2)         10528(5)         5781(2)         3.4           C(35)         7444(2)         11076(5)         5377(2)         3.9           C(36)         7585(2)         10357(5)         5104(2)         3.4           C(37)         7739(2)         9078(5)         5262(2)         2.9           C(38)         7745(2)         8548(5)         5683(2)         2.7           C(39)         8111(2)         8770(5)         6974(2)         3.0           C(40)         8525(2)         8791(5)         6974(2)         3.8           C(41)         8976(2)         8901(6)         7418(2)         5.2           C(42)         9023(2)         8976(6)         7893(2)         5.7           C(43)         8628(2)         8932(6)         7908(2)         5.2           C(44)         8172(2)         8819(6)         7457(2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       | 6007(2)   |           |           |             |
| C(31)         7442(2)         4851(6)         6691(3)         5.3           C(32)         7586(2)         6158(5)         6758(2)         3.8           C(33)         7588(2)         9231(4)         5950(2)         2.4           C(34)         7442(2)         10528(5)         5781(2)         3.4           C(35)         7444(2)         11076(5)         5377(2)         3.9           C(36)         7585(2)         10357(5)         5104(2)         3.4           C(37)         7739(2)         9078(5)         5262(2)         2.9           C(38)         7745(2)         8548(5)         5683(2)         2.7           C(39)         8111(2)         8770(5)         6974(2)         3.0           C(40)         8525(2)         8791(5)         6974(2)         3.8           C(41)         8976(2)         8901(6)         7418(2)         5.2           C(42)         9023(2)         8976(6)         7893(2)         5.7           C(43)         8628(2)         8932(6)         7908(2)         5.2           C(44)         8172(2)         8819(6)         7457(2)         4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |           |           |           |             |
| C(32)       7586(2)       6158(5)       6758(2)       3.8         C(33)       7588(2)       9231(4)       5950(2)       2.4         C(34)       7442(2)       10528(5)       5781(2)       3.4         C(35)       7444(2)       11076(5)       5377(2)       3.9         C(36)       7585(2)       10357(5)       5104(2)       3.4         C(37)       7739(2)       9078(5)       5262(2)       2.9         C(38)       7745(2)       8548(5)       5683(2)       2.7         C(39)       8111(2)       8770(5)       6974(2)       3.0         C(40)       8525(2)       8791(5)       6974(2)       3.8         C(41)       8976(2)       8901(6)       7418(2)       5.2         C(42)       9023(2)       8976(6)       7893(2)       5.7         C(43)       8628(2)       8932(6)       7908(2)       5.2         C(44)       8172(2)       8819(6)       7457(2)       4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |       |           | 4316(0)   |           |             |
| C(33)       7588(2)       9231(4)       5950(2)       2.4         C(34)       7442(2)       10528(5)       5781(2)       3.4         C(35)       7444(2)       11076(5)       5377(2)       3.9         C(36)       7585(2)       10357(5)       5104(2)       3.4         C(37)       7739(2)       9078(5)       5262(2)       2.9         C(38)       7745(2)       8548(5)       5683(2)       2.7         C(39)       8111(2)       8770(5)       6974(2)       3.0         C(40)       8525(2)       8791(5)       6974(2)       3.8         C(41)       8976(2)       8901(6)       7418(2)       5.2         C(42)       9023(2)       8976(6)       7893(2)       5.7         C(43)       8628(2)       8932(6)       7908(2)       5.2         C(44)       8172(2)       8819(6)       7457(2)       4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |       |           | 6159(5)   |           |             |
| C(34)       7442(2)       10528(5)       5781(2)       3.4         C(35)       7444(2)       11076(5)       5377(2)       3.9         C(36)       7585(2)       10357(5)       5104(2)       3.4         C(37)       7739(2)       9078(5)       5262(2)       2.9         C(38)       7745(2)       8548(5)       5683(2)       2.7         C(39)       8111(2)       8770(5)       6974(2)       3.0         C(40)       8525(2)       8791(5)       6974(2)       3.8         C(41)       8976(2)       8901(6)       7418(2)       5.2         C(42)       9023(2)       8976(6)       7893(2)       5.7         C(43)       8628(2)       8932(6)       7908(2)       5.2         C(44)       8172(2)       8819(6)       7457(2)       4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |       |           |           |           |             |
| C(35)       7444(2)       11076(5)       5377(2)       3.9         C(36)       7585(2)       10357(5)       5104(2)       3.4         C(37)       7739(2)       9078(5)       5262(2)       2.9         C(38)       7745(2)       8548(5)       5683(2)       2.7         C(39)       8111(2)       8770(5)       6974(2)       3.0         C(40)       8525(2)       8791(5)       6974(2)       3.8         C(41)       8976(2)       8901(6)       7418(2)       5.2         C(42)       9023(2)       8976(6)       7893(2)       5.7         C(43)       8628(2)       8932(6)       7908(2)       5.2         C(44)       8172(2)       8819(6)       7457(2)       4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |           | 10528(5)  | 5781(2)   |             |
| C(36)       7585(2)       10357(5)       5104(2)       3.4         C(37)       7739(2)       9078(5)       5262(2)       2.9         C(38)       7745(2)       8548(5)       5683(2)       2.7         C(39)       8111(2)       8770(5)       6974(2)       3.0         C(40)       8525(2)       8791(5)       6974(2)       3.8         C(41)       8976(2)       8901(6)       7418(2)       5.2         C(42)       9023(2)       8976(6)       7893(2)       5.7         C(43)       8628(2)       8932(6)       7908(2)       5.2         C(44)       8172(2)       8819(6)       7457(2)       4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |       |           |           |           |             |
| C(37)       7739(2)       9078(5)       5262(2)       2.9         C(38)       7745(2)       8548(5)       5683(2)       2.7         C(39)       8111(2)       8770(5)       6974(2)       3.0         C(40)       8525(2)       8791(5)       6974(2)       3.8         C(41)       8976(2)       8901(6)       7418(2)       5.2         C(42)       9023(2)       8976(6)       7893(2)       5.7         C(43)       8628(2)       8932(6)       7908(2)       5.2         C(44)       8172(2)       8819(6)       7457(2)       4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |       |           |           |           |             |
| C(38)       7745(2)       8548(5)       5683(2)       2.7         C(39)       8111(2)       8770(5)       6974(2)       3.0         C(40)       8525(2)       8791(5)       6974(2)       3.8         C(41)       8976(2)       8901(6)       7418(2)       5.2         C(42)       9023(2)       8976(6)       7893(2)       5.7         C(43)       8628(2)       8932(6)       7908(2)       5.2         C(44)       8172(2)       8819(6)       7457(2)       4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |       |           |           |           |             |
| C(39)       8111(2)       8770(5)       6974(2)       3.0         C(40)       8525(2)       8791(5)       6974(2)       3.8         C(41)       8976(2)       8901(6)       7418(2)       5.2         C(42)       9023(2)       8976(6)       7893(2)       5.7         C(43)       8628(2)       8932(6)       7908(2)       5.2         C(44)       8172(2)       8819(6)       7457(2)       4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |       |           | ` '       |           |             |
| C(40)       8525(2)       8791(5)       6974(2)       3.8         C(41)       8976(2)       8901(6)       7418(2)       5.2         C(42)       9023(2)       8976(6)       7893(2)       5.7         C(43)       8628(2)       8932(6)       7908(2)       5.2         C(44)       8172(2)       8819(6)       7457(2)       4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |           |           |           |             |
| C(41)       8976(2)       8901(6)       7418(2)       5.2         C(42)       9023(2)       8976(6)       7893(2)       5.7         C(43)       8628(2)       8932(6)       7908(2)       5.2         C(44)       8172(2)       8819(6)       7457(2)       4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |           |           |           |             |
| C(42)       9023(2)       8976(6)       7893(2)       5.7         C(43)       8628(2)       8932(6)       7908(2)       5.2         C(44)       8172(2)       8819(6)       7457(2)       4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |           |           |           |             |
| C(43) 8628(2) 8932(6) 7908(2) 5.2<br>C(44) 8172(2) 8819(6) 7457(2) 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |       |           |           |           |             |
| C(44) 8172(2) 8819(6) 7457(2) 4.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |       |           |           |           |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       |           | ` '       |           |             |
| D /3/δ(2) δ392(0) 0433(2) 2.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |       |           |           |           |             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |       | 1318(2)   | 0392(0)   | 0433(2)   | 2.0         |

RDE measurements. Tetraphenylborate salts of the dmpf complexes were converted to the tetrafluoroborate salts with QAE-Sephadex anion exchange regin, because of lability of tetraphenylborate anions on oxidation.

## **Results and Discussion**

Synthesis and Spectroscopic Properties. Synthetic procedures are somewhat different between the dppf and dmpf complexes. The [Co(acac)2(dmpf)]+ complex was prepared by the reaction of dmpf with [Co(acac)<sub>3</sub>] according to a method for the corresponding complexes of 1,2-diphosphines such as (CH<sub>3</sub>)<sub>2</sub>- $PCH_2CH_2P(CH_3)_2$  (dmpe)<sup>14)</sup> or  $(C_6H_5)_2PCH_2CH_2P$ -(C<sub>6</sub>H<sub>5</sub>)<sub>2</sub> (dppe).<sup>15)</sup> However, dppf did not react with [Co(acac)<sub>3</sub>], and the reaction in the presence of active charcoal resulted in the formation of unknown Co(II) species. The [Co(acac)<sub>2</sub>(dppf)]<sup>+</sup> complex was prepared by oxidation of a methanol solution containing dppf and [Co(acac)<sub>2</sub>(H<sub>2</sub>O)<sub>2</sub>] with PbO<sub>2</sub>. The bis-acac complexes with bulky monophosphines such as P(C<sub>6</sub>H<sub>5</sub>)<sub>3</sub> or P(C<sub>6</sub>H<sub>12</sub>)<sub>3</sub> were prepared by this method. The dtc complexes were obtained by oxidizing Co(II)-dppf or -dmpf complexes with tetramethylthiuram disulfide  $([(CH_3)_2NC(S)S-]_2)$ . A number of Co(III)-dtc complexes with diphosphine<sup>17)</sup> or diamine<sup>18)</sup> ligands were prepared by the same oxidation method. In the reaction for the dppf complex, it was necessary to use twice the molar quantity of dppf. The use of a stoichiometric amount of dppf gave only [Co(dtc)3], no detectable amount of [Co(dtc)<sub>2</sub>(dppf)]<sup>+</sup> being formed. On the other hand, [Co(dtc)<sub>2</sub>(dmpf)]<sup>+</sup> was obtained by the reaction with a stoichiometric amount of dmpf in moderate yield. Thus dmpf has a stronger affinity than dppf for Co(III). However, dmpf, as well as dppf are a bulky ligand. Several attempts were all unsuccessful to prepare the bis-type complexes,  $[CoX_2(dppf \text{ or } dmpf)_2]^{n+}$  $(X_2=(Cl)_2, acac, dtc)$  or complexes with other chelate ligands such as [Co(NH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>NH<sub>2</sub>)<sub>2</sub>(dppf or dmpf)]3+.

In the <sup>1</sup>H NMR spectrum, [Co(acac)<sub>2</sub>(dppf)]<sup>+</sup> shows the methine proton signal of acac at a fairly high field  $(\delta=5.02)$  compared with those of  $[Co(acac)_2(dmpf)]^+$  $(\delta=5.42)$  and  $[Co(acac)_3]$   $(\delta=5.51)^{15}$ . The  $\delta$  value of 5.02 for the dppf complex is similar to that of [Co- $(acac)_2(dppe)$ ]<sup>+</sup>( $\delta$ =4.93), the high field shift of which was attributed to the shielding effect of a phenyl group disposed over the acac chelate ring.<sup>15)</sup> The stacking structure between the phenyl and acac rings has been found by X-ray analyses in [Co(acac)(CN)<sub>2</sub>(dppe)]<sup>19)</sup> and  $[Co(acac)(RR-chxn)(edpp)]^{2+}$  (RR-chxn=(R,R)-chxn)1,2-cyclohexanediamine, edpp= $NH_2CH_2CH_2P(C_6H_5)_2$ ).<sup>20)</sup> The dppf complex would involve a similar stacking structure for the phenyl and acac chelate rings. The -N(CH<sub>3</sub>)<sub>2</sub> proton signals of [Co(dtc)<sub>2</sub>(dppf)]<sup>+</sup> are also observed at a high field,  $\delta$ =2.83 and 2.72, while those of  $[Co(dtc)_2(dmpf)]^+$  are at  $\delta=3.14$  and 3.10 and that of [Co(dtc)<sub>3</sub>] at  $\delta$ =3.23. The -N(CH<sub>3</sub>)<sub>2</sub> groups in the dppf complex are also shielded by the phenyl groups.

In Fig. 1 the absorption spectrum of [Co(acac)<sub>2</sub>(dppf)]<sup>+</sup> is compared with those of the related complexes. The first d-d band of the dppf complex is similar in pattern to that of [Co(acac)<sub>2</sub>(dppe)]<sup>+</sup>, but its band maximum

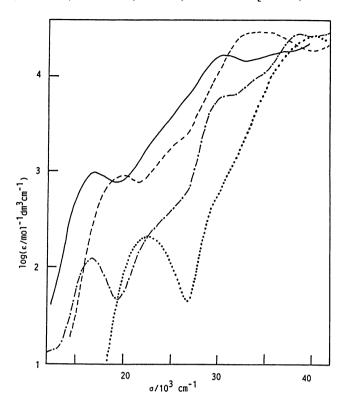



Fig. 1. Absorption spectra of [Co(acac)<sub>2</sub>(dppf)]BF<sub>4</sub> in CH<sub>2</sub>Cl<sub>2</sub> (—), [Co(acac)<sub>2</sub>(dppe)]PF<sub>6</sub> in ethanol (-----), [Co(acac)<sub>3</sub>] in CH<sub>2</sub>Cl<sub>2</sub> (—·—), and dppf in CH<sub>2</sub>Cl<sub>2</sub> solutions (······).

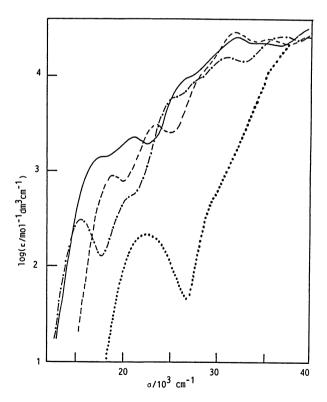



Fig. 2. Absorption spectra of  $[Co(dtc)_2(dppf)]BF_4$  in  $CH_2Cl_2(----)$ ,  $[Co(dtc)_2(dppe)]BF_4$  in  $CH_2Cl_2(-----)$ , and  $[Co(dtc)_3]$  in  $CH_2Cl_2(----)$ , and dppf in  $CH_2Cl_2$  solutions  $(\cdots)$ .

(17000 cm<sup>-1</sup>) is largely shifted to the lower energy side from that of the dppe complex (20160 cm<sup>-1</sup>).<sup>15)</sup> The band energy of the dppf complex is nearly the same as that of [Co(acac)<sub>3</sub>] (16900 cm<sup>-1</sup>), indicating that the ligand field strength of dppf is remarkably weak for a diphosphine chelate ligand. A similar, but smaller red shift is observed in the first d-d band of [Co(dtc)2- $(dppf)^{+}$  (17500 cm<sup>-1</sup>) as compared with that of  $[Co(dtc)_2(dppe)]^+$  (18800 cm<sup>-1</sup>) (Fig. 2). The band of [Co(dtc)<sub>2</sub>(dppf)]<sup>+</sup> is similar both in the shape and position to that of [Co(dtc)<sub>2</sub>(dppb)]<sup>+</sup> (17600 cm<sup>-1</sup>, dppb  $=(C_6H_5)_2P(CH_2)_4P(C_6H_5)_2)^{17}$  containing a large sevenmembered diphosphine chelate. The reduction of the ligand field strength of dppf is attributable to the bulkiness of this ligand, and extent of the reduction is larger in the six-membered acac complex than in the small four-membered dtc one. The energy differences in d-d bands seem to be small between [Co(acac or dtc)2-(dmpf)]<sup>+</sup> and the corresponding dmpe complexes, although their band positions are not clear (Fig. 3). The less bulky dmpf ligand than dppf may not reduce its ligand field strength appreciably in the present complexes. In conclusion, dppf and dmpf seem to have ligand field strengths similar to dppe and dmpe, respectively, but the strength of dppf is reduced by the steric factor due to its bulkiness.

**Electrochemistry.** Table 3 lists the half wave potentials,  $E_{1/2}(\text{red})$  and  $E_{1/2}(\text{ox})$  of the complexes measured by the RDE method, together with the data of related

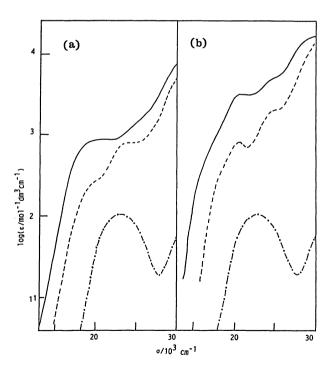



Fig. 3. Absorption spectra of a) [Co(acac)<sub>2</sub>(dmpf)]B- $(C_6H_5)_4$  in  $CH_2Cl_2$  (——), [Co(acac)<sub>2</sub> (dmpe)]PF<sub>6</sub> in methanol (-----), and ferrocene in  $CH_2Cl_2$  (—·—); b) [Co(dtc)<sub>2</sub>(dmpf)]BF<sub>4</sub> in  $CH_2Cl_2$  (-----) and [Co(dtc)<sub>2</sub>-(dmpe)]BF<sub>4</sub> in  $CH_2Cl_2$  (-----), and ferrocene in  $CH_2Cl_2$  solutions (-----).

diphosphine chelate complexes. Irreversible waves were observed for some redox reactions of the complexes as noted in Table 3. The cyclic voltammograms were also obtained, and the representative is shown in Fig. 4. The  $E_{1/2}$  (red) values are all assigned to reduction potentials of Co(III) to Co(II).21) In the dtc complexes, the values become more positive as the ring size of R<sub>2</sub>P(CH<sub>2</sub>)<sub>n</sub>PR<sub>2</sub> increases. The positive sifts seem to indicate that the complex containing a larger diphosphine chelate is less stable owing to steric repulsions between the ligands, although no detailed discussion can be given for these potential differences at present. The value of [Co(dtc)2(dppf)]+ is the same as that of  $[Co(dtc)_2(dppb)]^+$  (-0.93 V). As stated previously, the ligand field spectra of these two complexes are also very similar. Thus dppf may exert a steric effect similar to dppb on the stability of the present type of complex.

The  $E_{1/2}(\text{red})$  values of the  $[\text{Co}(\text{dtc})_2(\text{dmp}x)]\text{BF}_4$  (x=f, p, e) complexes are more negative than those of the corresponding dppx complexes. The dmpx complexes would be more stable than the dppx ones, since the dimethylphosphino group is more basic and less bulky than the diphenylphosphino one. The potential difference between the dmpx and dppx complexes becomes larger in the order of x=f(0.34 V)>p(0.21 V)>e(0.12 V). With the increasing ring size of diphosphine chelate, the

Table 3. Electrochemical Data by RDE Voltammetry

| $E_{1/2}(\mathrm{red})/\mathrm{V}$ | $E_{1/2}(ox)/V$                                                                    |
|------------------------------------|------------------------------------------------------------------------------------|
|                                    | 0.28                                                                               |
| -0.93                              | 0.61                                                                               |
| -0.93                              | 1.12                                                                               |
| -1.14                              | 1.14                                                                               |
| -1.26                              | 1.11                                                                               |
| -1.27                              | $0.56^{d}$                                                                         |
| -1.35                              | 1.01                                                                               |
| -1.38                              | 0.97                                                                               |
| $-0.61^{\text{b}}$                 | 0.68                                                                               |
| $-1.03^{c)}$                       | $0.67^{d}$                                                                         |
|                                    | -0.93<br>-0.93<br>-1.14<br>-1.26<br>-1.27<br>-1.35<br>-1.38<br>-0.61 <sup>b)</sup> |

a) Refs. 17 and 21. b) Irreversible,  $E_{1/4}-E_{3/4}=110$  mV. c) Irreversible,  $E_{1/4}-E_{3/4}=155$  mV. d) Irreversible,  $E_{1/4}$ 

 $-E_{3/4}$ =130 mV.

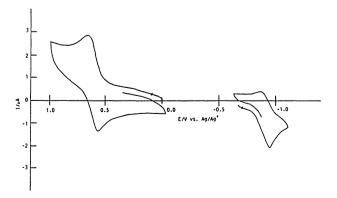



Fig. 4. Cyclic voltammogram of [Co(dtc)<sub>2</sub> (dppf)]BF<sub>4</sub>.

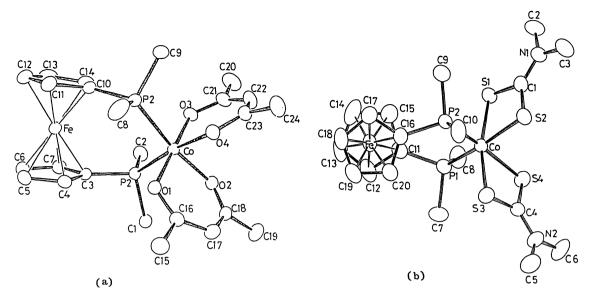



Fig. 5. Perspective views of (a)  $[Co(acac)_2(dmpf)]B(C_6H_5)_4$  and (b)  $[Co(dtc)_2(dmpf)]B(C_6H_5)_4$ .

Table 4. Selected Bond Distances (l/Å) and Angles ( $\phi/^{\circ}$ ) of [Co(acac)<sub>2</sub>(dmpf)]B(C<sub>6</sub>H<sub>5</sub>)<sub>4</sub>

|                  | Table 4. Se | elected Bolld Dist |          | d Angles (φ/ ) of [Co | (acac)2(un | пргујь(С6П5)4     |          |
|------------------|-------------|--------------------|----------|-----------------------|------------|-------------------|----------|
| Co-P(1)          | 2.252(1)    | Co-P(2)            | 2.254(1) | C(5)-Fe- $C(14)$      | 177.8(2)   | C(6)-Fe- $C(7)$   | 40.2(2)  |
| Co-O(1)          | 1.897(3)    | Co-O(2)            | 1.939(2) | C(6)-Fe- $C(10)$      | 177.3(2)   | C(6)-Fe- $C(11)$  | 138.5(2) |
| Co-O(3)          | 1.900(3)    | Co-O(4)            | 1.940(2) | C(6)-Fe- $C(12)$      | 112.7(2)   | C(6)-Fe- $C(13)$  | 114.0(2) |
| Fe-C(3)          | 2.013(3)    | Fe-C(4)            | 2.023(5) | C(6)-Fe- $C(14)$      | 140.8(2)   | C(7)-Fe- $C(10)$  | 139.8(2) |
| Fe-C(5)          | 2.053(5)    | Fe-C(6)            | 2.054(4) | C(7)-Fe- $C(11)$      | 178.3(2)   | C(7)-Fe- $C(12)$  | 137.7(2) |
| Fe-C(7)          | 2.037(4)    | Fe-C(10)           | 2.004(3) | C(10)-Fe- $C(11)$     | 41.6(1)    | C(10)-Fe- $C(12)$ | 69.1(1)  |
| Fe-C(11)         | 2.036(4)    | Fe-C(12)           | 2.066(5) | C(10)-Fe- $C(13)$     | 111.4(2)   | C(10)-Fe- $C(14)$ | 41.6(2)  |
| Fe-C(13)         | 2.055(5)    | Fe-C(14)           | 2.035(4) | C(11)-Fe- $C(12)$     | 40.8(2)    | Co-P(1)-C(1)      | 111.2(2) |
| P(1)-C(1)        | 1.803(5)    | P(1)-C(2)          | 1.820(6) | Co-P(1)-C(2)          | 110.6(2)   | Co-P(1)-C(3)      | 122.4(1) |
| P(1)-C(3)        | 1.797(3)    | P(2)-C(8)          | 1.803(5) | C(1)-P(1)-C(2)        | 105.3(3)   | C(1)-P(1)-C(3)    | 102.3(2) |
| P(2)-C(9)        | 1.809(4)    | P(2)-C(10)         | 1.799(4) | C(2)-P(1)-C(3)        | 103.6(3)   | Co-P(2)-C(8)      | 114.3(1) |
| O(1)-C(16)       | 1.292(5)    | O(2)-C(18)         | 1.267(5) | Co-P(2)-C(9)          | 110.3(1)   | Co-P(2)-C(10)     | 118.5(2) |
| O(3)-C(21)       | 1.285(4)    | O(4)-C(23)         | 1.263(4) | C(8)-P(2)-C(9)        | 103.8(2)   | C(8)-P(2)-C(10)   | 105.7(2) |
| C(3)-C(4)        | 1.422(6)    | C(3)-C(7)          | 1.442(6) | C(9)-P(2)-C(10)       | 102.8(2)   | Co-O(1)-C(16)     | 122.1(3) |
| C(4)-C(5)        | 1.413(6)    | C(5)-C(6)          | 1.398(9) | Co-O(2)-C(18)         | 123.6(3)   | Co-O(3)-C(21)     | 122.7(3) |
| C(6)-C(7)        | 1.405(6)    | C(10)-C(11)        | 1.436(6) | Co-O(4)-C(23)         | 123.9(3)   | Fe-C(3)-P(1)      | 122.8(2) |
| C(10)-C(14)      | 1.433(6)    | C(11)-C(12)        | 1.430(7) | Fe-C(3)-C(4)          | 69.8(2)    | Fe-C(3)-C(7)      | 126.8(2) |
| C(12)-C(13)      | 1.392(7)    | C(13)-C(14)        | 1.407(5) | P(1)-C(3)-C(4)        | 126.8(3)   | P(1)-C(3)-C(7)    | 126.1(3) |
| C(15)-C(16)      | 1.496(8)    | C(16)-C(17)        | 1.373(6) | C(4)-C(3)-C(7)        | 107.0(3)   | Fe-C(4)-C(3)      | 69.0(3)  |
| C(17)-C(18)      | 1.388(6)    | C(18)-C(19)        | 1.484(6) | Fe-C(4)-C(5)          | 70.9(3)    | C(3)-C(4)-C(5)    | 108.1(4) |
| C(20)-C(21)      | 1.491(7)    | C(21)-C(22)        | 1.388(6) | Fe-C(5)-C(4)          | 68.6(3)    | Fe-C(5)-C(6)      | 70.1(3)  |
| C(22)-C(23)      | 1.400(6)    | C(23)-C(24)        | 1.497(6) | C(4)-C(5)-C(6)        | 108.4(4)   | Fe-C(6)-C(5)      | 70.1(3)  |
|                  |             |                    |          | Fe-C(6)-C(7)          | 69.3(2)    | C(5)-C(6)-C(7)    | 109.0(4) |
| P(1)-Co-P(2)     | 101.09(4)   | P(1)-Co-O(1)       | 89.75(9) | Fe-C(7)-C(3)          | 68.3(2)    | Fe-C(7)-C(6)      | 70.6(3)  |
| P(1)-Co-O(2)     | 83.97(8)    | P(1)-Co-O(3)       | 90.61(8) | C(3)-C(7)-C(6)        | 107.4(5)   | Fe-C(10)-P(2)     | 122.6(2) |
| P(1)-Co-O(4)     |             | P(2)-Co-O(1)       | 90.55(8) | Fe-C(10)-C(11)        | 70.4(2)    | Fe-C(10)-C(14)    | 70.4(2)  |
| P(2)-Co-O(2)     | 172.98(8)   | P(2)-Co-O(3)       | 89.14(8) | P(2)-C(10)-C(11)      | 127.7(3)   | P(2)-C(10)-C(14)  | 125.0(3) |
| P(2)-Co-O(4)     | 87.02(7)    | O(1)-Co- $O(2)$    | 94.4(1)  | C(11)-C(10)-C(14)     | 107.3(3)   | Fe-C(11)-C(10)    | 68.0(2)  |
| O(1)-Co-O(3)     | 179.6(1)    | O(1)-Co- $O(4)$    | 85.8(1)  | Fe-C(11)-C(12)        | 70.7(2)    | C(10)-C(11)-C(12) | 107.4(4) |
| O(2)-Co-O(3)     | 85.9(1)     | O(2)-Co-O(4)       | 88.3(1)  | Fe-C(12)-C(11)        | 68.5(2)    | Fe-C(12)-C(13)    | 69.8(2)  |
| O(3)-Co-O(4)     | 93.9(1)     | C(3)-Fe- $C(4)$    | 41.3(2)  | C(11)-C(12)-C(13)     | 108.0(3)   | Fe-C(13)-C(12)    | 70.7(3)  |
| C(3)-Fe- $C(5)$  | 68.7(2)     | C(3)-Fe- $C(6)$    | 68.7(2)  | Fe-C(13)-C(14)        | 69.1(3)    | C(12)-C(13)-C(14) |          |
| C(3)-Fe- $C(7)$  | 41.7(2)     | C(3)-Fe- $C(10)$   | 109.6(1) | Fe-C(14)-C(10)        | 68.1(2)    | Fe-C(14)-C(13)    | 70.7(3)  |
| C(3)-Fe- $C(11)$ | 139.9(2)    | C(3)-Fe- $C(12)$   | 177.0(2) | C(10)-C(14)-C(13)     | 107.6(4)   | O(1)-C(16)-C(15)  | 113.8(4) |
| C(3)-Fe- $C(13)$ | 137.6(2)    | C(3)-Fe- $C(14)$   | 109.3(1) | O(1)-C(16)-C(17)      | 125.5(5)   | C(15)-C(16)-C(17) | 120.7(4) |
| C(4)-Fe- $C(5)$  | 40.6(2)     | C(4)-Fe- $C(6)$    | 68.0(2)  | C(16)-C(17)-C(18)     | 126.2(4)   | O(2)-C(18)-C(17)  | 123.6(3) |
| C(4)-Fe- $C(7)$  | 69.1(2)     | C(4)-Fe- $C(10)$   | 109.3(2) | O(2)-C(18)-C(19)      | 114.9(4)   | C(17)-C(18)-C(19) |          |
| C(4)-Fe- $C(11)$ | 111.7(2)    | C(4)-Fe- $C(12)$   | 141.6(2) | O(3)-C(21)-C(20)      | 115.0(3)   | O(3)-C(21)-C(22)  | 125.6(4) |
| C(4)-Fe- $C(13)$ | 177.6(2)    | C(4)-Fe- $C(14)$   | 137.3(2) | C(20)-C(21)-C(22)     | 119.4(3)   | C(21)-C(22)-C(23) |          |
| C(5)-Fe- $C(6)$  | 39.8(2)     | C(5)-Fe- $C(7)$    | 67.8(2)  | O(4)-C(23)-C(22)      | 124.5(3)   | O(4)-C(23)-C(24)  | 115.8(4) |
| C(5)-Fe- $C(10)$ | 137.8(2)    | C(5)-Fe- $C(11)$   | 111.7(2) | C(22)-C(23)-C(24)     | 119.7(3)   |                   |          |
| C(5)-Fe- $C(12)$ | 114.2(2)    | C(5)-Fe- $C(13)$   | 141.9(2) |                       |            |                   |          |

Table 5. Selected Bond Distances (l/Å) and Angles ( $\phi/^{\circ}$ ) of [Co(dtc)<sub>2</sub>(dmpf)]B(C<sub>6</sub>H<sub>5</sub>)<sub>4</sub>

| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 | Table J. S | Selected Bolld Dist | ances (i/A) an | ilu Aligies (ψ/ ) ol [Co                   | J(dtc)2(dill | p1)]b(C6115)4     |          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------|---------------------|----------------|--------------------------------------------|--------------|-------------------|----------|
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Co-P(1)         | 2.257(2)   | Co-P(2)             | 2.250(1)       | C(14)-Fe- $C(16)$                          | 136.7(3)     | C(14)-Fe- $C(17)$ | 111.6(3) |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |            |                     |                | C(14)-Fe-C(18)                             |              | C(14)-Fe-C(19)    |          |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |            |                     |                | C(14)-Fe-C(20)                             | 176.4(3)     | C(15)-Fe- $C(16)$ | 108.8(3) |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Fe-C(11)        | 2.005(5)   |                     | 2.030(7)       | C(15)-Fe-C(17)                             | 112.1(2)     | C(15)-Fe- $C(18)$ | 142.5(2) |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Fe-C(13)        | 2.055(10)  | Fe-C(14)            | 2.059(8)       | C(15)-Fe- $C(19)$                          | 176.4(2)     | C(15)-Fe- $C(20)$ |          |
| $ \begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Fe-C(15)        | 2.042(5)   | Fe-C(16)            | 2.007(8)       |                                            | 41.5(3)      | C(16)-Fe- $C(18)$ | 68.8(3)  |
| $\begin{array}{llllllllllllllllllllllllllllllllllll$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Fe-C(17)        | 2.044(6)   |                     | 2.060(5)       | C(16)-Fe-C(19)                             | 68.8(3)      | C(16)-Fe- $C(20)$ | 41.6(3)  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Fe-C(19)        | 2.056(5)   | Fe-C(20)            | 2.029(4)       | C(17)-Fe- $C(18)$                          | 40.5(2)      | C(17)-Fe- $C(19)$ | 68.1(2)  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | P(1)-C(7)       | 1.813(5)   | P(1)-C(8)           | 1.839(6)       | C(17)-Fe- $C(20)$                          | 69.2(3)      | C(18)-Fe- $C(19)$ | 39.8(2)  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 | 1.805(7)   |                     | 1.830(5)       | C(18)-Fe-C(20)                             |              | C(19)-Fe-C(20)    | 40.2(2)  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | P(2)-C(10)      | 1.823(8)   |                     | 1.807(6)       | $\hat{\text{Co-P}(1)} - \hat{\text{C}(7)}$ | 115.1(2)     |                   | 112.3(2) |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                 |            |                     | 1.708(6)       | Co-P(1)-C(11)                              |              | C(7)-P(1)-C(8)    | 103.3(2) |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | S(3)-C(4)       | 1.720(5)   | S(4)-C(4)           | 1.698(6)       | C(7)-P(1)-C(11)                            | 103.3(3)     | C(8)-P(1)-C(11)   | 100.0(3) |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N(1)-C(1)       | 1.316(6)   | N(1)-C(2)           | 1.458(8)       | Co-P(2)-C(9)                               |              | Co-P(2)-C(10)     | 112.3(2) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | N(1)-C(3)       | 1.464(10)  | N(2)-C(4)           | 1.329(7)       | Co-P(2)-C(16)                              | 119.4(2)     | C(9)-P(2)-C(10)   | 103.9(3) |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | N(2)-C(5)       | 1.457(8)   | N(2)-C(6)           | 1.468(7)       | C(9)-P(2)-C(16)                            | 103.8(3)     | C(10)-P(2)-C(16)  | 99.3(3)  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C(11)-C(12)     |            |                     |                | Co-S(1)-C(1)                               |              | Co-S(2)-C(1)      | 87.0(2)  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | C(12)-C(13)     | 1.397(10)  | C(13)-C(14)         | 1.422(9)       | Co-S(3)-C(4)                               | 87.3(2)      | Co-S(4)-C(4)      | 86.6(2)  |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | C(14)-C(15)     |            | C(16)-C(17)         | 1.437(8)       | Fe-C(11)-P(1)                              |              | Fe-C(11)-C(12)    | 70.1(3)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C(16)-C(20)     | 1.434(7)   | C(17)-C(18)         | 1.419(8)       | Fe-C(11)-C(15)                             | 70.7(3)      | P(1)-C(11)-C(12)  | 127.1(4) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | C(18)-C(19)     | 1.402(7)   | C(19)-C(20)         | 1.404(9)       |                                            |              |                   |          |
| P(1)-Co-S(2) 165.9(1) P(1)-Co-S(3) 98.4(1) Fe-C(13)-C(14) 69.9(4) C(12)-C(13)-C(14) 108.9(6) P(1)-Co-S(4) 85.4(1) P(2)-Co-S(1) 96.5(1) Fe-C(14)-C(13) 69.6(3) Fe-C(14)-C(15) 69.3(5) P(2)-Co-S(2) 85.3(1) P(2)-Co-S(3) 90.6(1) C(13)-C(14)-C(15) 108.0(5) Fe-C(15)-C(11) 67.9(3) P(2)-Co-S(4) 165.1(1) S(1)-Co-S(2) 75.8(1) Fe-C(15)-C(14) 70.5(4) C(11)-C(15)-C(14) 108.0(5) S(1)-Co-S(3) 166.4(1) S(1)-Co-S(4) 96.1(1) Fe-C(16)-P(2) 124.0(3) Fe-C(16)-C(17) 70.6(4) S(2)-Co-S(3) 93.4(1) S(2)-Co-S(4) 89.9(1) Fe-C(16)-C(20) 70.0(3) P(2)-C(16)-C(17) 128.3(4) S(3)-Co-S(4) 75.5(1) C(11)-Fe-C(12) 41.7(2) P(2)-C(16)-C(20) 124.4(4) C(17)-C(16)-C(20) 107.3(5) C(11)-Fe-C(13) 68.8(3) C(11)-Fe-C(14) 69.0(3) Fe-C(17)-C(16) 67.8(3) Fe-C(17)-C(18) 70.4(4) C(11)-Fe-C(17) 140.2(2) C(11)-Fe-C(18) 175.7(2) Fe-C(18)-C(19) 70.0(3) C(17)-C(18)-C(19) 108.8(5) C(11)-Fe-C(13) 40.0(3) C(12)-Fe-C(14) 68.2(3) C(18)-C(19) 70.0(3) C(17)-C(18)-C(19) 108.8(5) C(12)-Fe-C(15) 69.1(2) C(12)-Fe-C(16) 140.0(3) Fe-C(19)-C(20) 108.8(5) Fe-C(20)-C(16) 68.3(3) C(12)-Fe-C(17) 178.0(3) C(12)-Fe-C(18) 137.6(2) S(1)-C(1)-S(2) 109.9(3) S(1)-C(1)-N(1) 125.5(5) C(12)-Fe-C(19) 110.8(2) C(12)-Fe-C(18) 137.6(2) S(1)-C(1)-S(2) 109.9(3) S(1)-C(1)-N(1) 125.5(5) C(13)-Fe-C(14) 40.4(3) C(13)-Fe-C(15) 113.4(3) C(13)-Fe-C(15) 114.4(3) C(2)-N(1)-C(3) 117.4(4) C(4)-N(2)-C(5) 122.8(4) |                 |            |                     |                | Fe-C(12)-C(11)                             | 68.2(4)      | Fe-C(12)-C(13)    | 71.0(4)  |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | P(1)-Co- $P(2)$ |            |                     |                |                                            |              |                   |          |
| P(2)-Co-S(2) 85.3(1) P(2)-Co-S(3) 90.6(1) C(13)-C(14)-C(15) 108.0(5) Fe-C(15)-C(11) 67.9(3) P(2)-Co-S(4) 165.1(1) S(1)-Co-S(2) 75.8(1) Fe-C(15)-C(14) 70.5(4) C(11)-C(15)-C(14) 108.0(5) S(1)-Co-S(3) 166.4(1) S(1)-Co-S(4) 96.1(1) Fe-C(16)-P(2) 124.0(3) Fe-C(16)-C(17) 70.6(4) S(2)-Co-S(3) 93.4(1) S(2)-Co-S(4) 89.9(1) Fe-C(16)-C(20) 70.0(3) P(2)-C(16)-C(17) 128.3(4) S(3)-Co-S(4) 75.5(1) C(11)-Fe-C(12) 41.7(2) P(2)-C(16)-C(20) 124.4(4) C(17)-C(16)-C(20) 107.3(5) C(11)-Fe-C(13) 68.8(3) C(11)-Fe-C(14) 69.0(3) Fe-C(17)-C(16) 67.8(3) Fe-C(17)-C(18) 70.4(4) C(11)-Fe-C(15) 41.5(2) C(11)-Fe-C(16) 109.2(3) C(16)-C(17)-C(18) 107.2(4) Fe-C(18)-C(17) 69.2(3) C(11)-Fe-C(17) 140.2(2) C(11)-Fe-C(18) 175.7(2) Fe-C(18)-C(19) 70.0(3) C(17)-C(18)-C(19) 108.8(5) C(12)-Fe-C(13) 40.0(3) C(12)-Fe-C(14) 68.2(3) C(18)-C(19)-C(20) 108.8(5) Fe-C(20)-C(16) 68.3(3) C(12)-Fe-C(15) 69.1(2) C(12)-Fe-C(16) 140.0(3) Fe-C(20)-C(19) 71.0(4) C(16)-C(20)-C(19) 108.0(5) C(12)-Fe-C(17) 178.0(3) C(12)-Fe-C(18) 137.6(2) S(1)-C(1)-S(2) 109.9(3) S(1)-C(1)-N(1) 125.5(5) C(12)-Fe-C(14) 40.4(3) C(12)-Fe-C(15) 68.0(3) S(3)-C(4)-N(2) 123.5(4) S(4)-C(4)-N(2) 125.9(4) C(13)-Fe-C(18) 113.4(3) C(13)-Fe-C(17) 138.6(3) C(1)-N(1)-C(2) 122.0(5) C(1)-N(1)-C(3) 120.5(6) C(13)-Fe-C(18) 113.4(3) C(13)-Fe-C(19) 114.4(3) C(2)-N(1)-C(3) 117.4(4) C(4)-N(2)-C(5) 122.8(4)        | P(1)-Co-S(2)    |            |                     |                | Fe-C(13)-C(14)                             |              | C(12)-C(13)-C(14) |          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |            |                     |                |                                            |              |                   |          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |            |                     |                |                                            |              |                   |          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | P(2)-Co-S(4)    |            | S(1)–Co– $S(2)$     | 75.8(1)        | Fe-C(15)-C(14)                             | 70.5(4)      | C(11)-C(15)-C(14) | 108.0(5) |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |            |                     |                |                                            |              |                   |          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |            |                     |                | Fe-C(16)-C(20)                             |              |                   |          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |            |                     |                |                                            |              |                   |          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |            |                     |                |                                            |              |                   |          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                 |            |                     |                |                                            |              |                   |          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ( ) ( )         |            |                     |                |                                            |              |                   |          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | ` / ` /         |            |                     |                |                                            |              |                   |          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |            |                     | 68.2(3)        |                                            |              |                   |          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |            |                     |                | . , . ,                                    |              |                   |          |
| C(13)-Fe-C(14) 40.4(3) C(13)-Fe-C(15) 68.0(3) S(3)-C(4)-N(2) 123.5(4) S(4)-C(4)-N(2) 125.9(4) C(13)-Fe-C(16) 176.7(4) C(13)-Fe-C(17) 138.6(3) C(1)-N(1)-C(2) 122.0(5) C(1)-N(1)-C(3) 120.5(6) C(13)-Fe-C(18) 113.4(3) C(13)-Fe-C(19) 114.4(3) C(2)-N(1)-C(3) 117.4(4) C(4)-N(2)-C(5) 122.8(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                 |            |                     |                |                                            |              |                   |          |
| C(13)-Fe-C(16) 176.7(4) C(13)-Fe-C(17) 138.6(3) C(1)-N(1)-C(2) 122.0(5) C(1)-N(1)-C(3) 120.5(6) C(13)-Fe-C(18) 113.4(3) C(13)-Fe-C(19) 114.4(3) C(2)-N(1)-C(3) 117.4(4) C(4)-N(2)-C(5) 122.8(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |            |                     | 111.2(3)       |                                            |              |                   | 110.6(3) |
| C(13)-Fe-C(18) 113.4(3) $C(13)-Fe-C(19)$ 114.4(3) $C(2)-N(1)-C(3)$ 117.4(4) $C(4)-N(2)-C(5)$ 122.8(4)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                 |            |                     |                |                                            |              |                   |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | ( ) ( )         |            |                     |                |                                            |              |                   |          |
| C(13)-Fe-C(20) 141.1(3) C(14)-Fe-C(15) 40.2(3) C(4)-N(2)-C(6) 119.3(5) C(5)-N(2)-C(6) 117.9(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                 |            |                     |                |                                            |              |                   |          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | C(13)-Fe-C(20)  | 141.1(3)   | C(14)-Fe-C(15)      | 40.2(3)        | C(4)-N(2)-C(6)                             | 119.3(5)     | C(5)-N(2)-C(6)    | 117.9(5) |

dppx complex seems to decrease its stability more largely than the dmpx complex.

The acac complexes of dppf and dmpf show more positive  $E_{1/2}(\text{red})$  values by 0.2—0.3 V than those of the corresponding dtc complexes. The acac complexes are reduced more easily to Co(II) than the dtc complexes are. Our previous studies indicate that mixed-ligand Co(III)-phosphine complexes are formed more easily and are more stable with dtc than with acac. <sup>15,17)</sup>

The  $E_{1/2}(ox)$  values of the dppf and dmpf complexes are in the range of 0.56—0.68 V, while those of the  $R_2P(CH_2)_nPR_2$  complexes are 0.97—1.14 V. The former values can be assigned to the oxidation potential of Fe(II) to Fe(III), and the latter ones to that of Co(III) to Co(IV). The value of dppf (0.28 V) shifts to the positive side by 0.3—0.4 V upon coordination to Co(III), indicating a decrease in electron density of Fe(II) by donation of the phosphino groups. The oxidation potential of dmpf was not measured, because

pure dmpf was not obtained. The Co(III) ions in the dppf and dmpf complexes were not oxidized to Co(IV) within the voltage limit of solvent, acetonitrile (ca. +1.8 V). The electron-withdrawing effect of the oxidized dppf and dmpf ligands raises the oxidation potential of the Co(III) center to a large extent.

Crystal Structures. No X-ray structure analysis has been reported for dmpf complexes, although those of a large number of dppf complexes have been done. Perspective views of [Co(acac)<sub>2</sub>(dmpf)]<sup>+</sup> (1) and [Co-(dtc)<sub>2</sub>(dmpf)]<sup>+</sup> (2) are shown in Fig. 5, together with the numbering schemes. The selected bond distances and angles are listed in Tables 4 and 5. Both Co atoms in 1 and 2 form a distorted octahedron. The dmpf ligand functions as a large bidentate chelate. The Co-P bond lengths of 1 (2.252(1), 2.254(1) Å) and 2 (2.257(2), 2.250(1) Å) are fairly longer than those found in related mixed-ligand phosphine complexes with oxygen or sulfur donor atoms such as [Co(acac)<sub>2</sub>{NH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>P-

 $(CH_3)_2$ ]<sup>+</sup> (2.192(4) Å)<sup>23)</sup> or  $[Co(S_2COC_2H_5)_2(dmpe)]^+$ (2.205(1) Å).<sup>24)</sup> The P-Co-P chelate angles are widened largely from the octahedral angle, 101.09(4)° in 1 and  $102.3(1)^{\circ}$  in 2. The Co-P-C (Cp ring) angles in 1  $(122.4(1), 118.5(2)^{\circ})$  and in 2  $(120.5(2), 119.4(2)^{\circ})$  are also much larger than the tetrahedral angle. The P-Co-P angles found in this study are appreciably larger than those of octahedral complexes of dppf, 93.58(4)° in  $[ReCl(CO)_3(dppf)]^{22}$  95.28(1)° in  $[Mo(CO)_4(dppf)]^{25}$ and  $98.2(1)^{\circ}$  in [Mn(MeCp)(CO)(dppf)],<sup>26)</sup> and are rather similar to those of 4-coordinate [Rh(dppf) (norbornadien)]ClO<sub>4</sub> (103.71(5)°)<sup>27)</sup> and [(dppf)Pt( $\mu$ -H)( $\mu$ -CO)Pt(dppf)]BF<sub>4</sub> · 0.5H<sub>2</sub>O (103.66(6)°).<sup>28)</sup> Two cyclopentadienyl rings of the ferrocene moiety are staggered with the angle of  $37.7(2)^{\circ}$  in 1 and of  $37.6(2)^{\circ}$  in 2, and are slightly tilted towards the Co atom with the angle of  $4.4(2)^{\circ}$  in 1 and  $5.0(3)^{\circ}$  in 2. The chelate ring formed by dmpf and the Co atom is twisted to take the ob in 1 and lel in 2 conformations<sup>29)</sup> with respect to the pseudothreefold axis of the tris(chelate) complex. Other geometries of the cyclopentadienyl moiety are similar to those of dppf and other substituted ferrocenes.<sup>25)</sup>

The Co-O bond lengths trans to P (av. 1.940(2) Å) in 1 are longer than those trans to O (av. 1.899(2) Å) by 0.041(3) Å. Similarly the Co-S bond lengths trans to P (av. 2.303(2) Å) are longer than those trans to S (av. 2.277(2) Å) by 0.026(2) Å. The elongations of the Co-O and Co-S bonds trans to P are attributable to the trans influence of the dimethylphosphino donor group. However, the extents of elongation are small compared with 0.076(7) Å in [Co(acac)<sub>2</sub>{NH<sub>2</sub>CH<sub>2</sub>CH<sub>2</sub>P(CH<sub>3</sub>)<sub>2</sub>}]<sup>+23)</sup> and 0.035(2) Å in [Co(S<sub>2</sub>COC<sub>2</sub>H<sub>5</sub>)<sub>2</sub>(dmpe)]<sup>+.24)</sup> The weak trans influence of dmpf in 1 and 2 may be the results from the longer Co-P bond lengths than those in these two related complexes. Other structural parameters for the acac and dtc chelates are similar to those, respectively found in related complexes.

Attempts to prepare crystals of the dppf complexes suitable for X-ray crystal analysis were unsuccessful in the present study.

This work was supported by a Grant-in-Aid for Scientific Research No. 03453047 from the Ministry of Education, Science and Culture. We wish to thank the Institute for Molecular Science (Okazaki) for use of X-ray and computation facilities.

## References

- 1) Recent papers: a) K. Kashiwabara, M. Jung, and J. Fujita, *Bull. Chem. Soc. Jpn.*, **64**, 2372 (1991), b) T. Kitagawa, M. Kita, K. Kashiwabara, and J. Fujita, *ibid.*, **64**, 2942 (1991), c) M. Jung, M. Atoh, K. Kashiwabara, and J. Fujita, *ibid.*, **63**, 2051 (1990), and references therein.
- 2) Recent papers: a) U. Casellato, B. Corain, R. Graziani, B. Longato, and G. Pilloni, *Inorg. Chem.*, 29, 1193 (1990), b) T. Kim, K. Kwon, S. Kwon, J. Baeg, S. Shim, and D. Lee, *J. Organomet. Chem.*, 389, 205 (1990), and references therein.
  - 3) T. S. A. Hor and L. Phang, J. Organomet. Chem., 373,

- 319 (1989), and references therein.
- 4) Y. Kiso, M. Kumada, K. Tamao, and M. Umeno, J. Organomet. Chem., 50, 297 (1973).
- 5) J. J. Bishop, A. Davison, M. L. Katcher, D. W. Lichtenberg, R. E. Merill, and J. C. Smart, *J. Organomet. Chem.*, 27, 241 (1971).
  - 6) "Inorg. Synth.," Vol. XI (1968), p. 83.
  - 7) "Inorg. Synth.," Vol. V (1957), p. 188.
- 8) T. Sakurai and K. Kobayashi, Rikagaku Kenkyusho Hokoku, 55, 69 (1979).
- 9) Tables of the coordinates of hydrogen atoms, the anisotropic thermal parameters of the non-hydrogen atoms, and the observed and calculated structure factors are kept as Document No. 9015 for 1 and 2 at the Office of the Editor of Bull. Chem. Soc. Jpn.
- 10) W. R. Busing and H. A. Levy, *Acta Crystallogr.*, 10, 180 (1957).
- 11) P. Main, S. E. Hull, L. Lessinger, G. Germain, J.-P. Declercq, and M. N. Woolfson, MULTAN78. A system of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium (1978).
- 12) A. D. Mighell, C. R. Hubbard, and J. K. Stalick, NBS\*AID80. A FORTRAN Program for Crystallographic Data Evaluation. NBS Technical Note 1141. National Bureau of Standards, Washington, USA.
- 13) "International Tables for X-Ray Crystallography," Kynoch Press, Birmingham (1974), Vol. IV. (Present distributor D. Reidel, Dordrecht)
- 14) T. Ohishi, K. Kashiwabara, and J. Fujita, *Bull. Chem. Soc. Jpn.*, **56**, 3441 (1983).
- 15) K. Kashiwabara, I. Kinoshita, T. Ito, and J. Fujita, Bull. Chem. Soc. Jpn., 54, 725 (1981).
- 16) K. Katoh, H. Sugiura, K. Kashiwabara, and J. Fujita, Bull. Chem. Soc. Jpn., 57, 3580 (1984).
- 17) M. Kita, A. Okuyama, K. Kashiwabara, and J. Fujita, *Bull. Chem. Soc. Jpn.*, **63**, 1994 (1990).
- 18) M. Kita, K. Yamanari, and Y. Shimura, *Bull. Chem. Soc. Jpn.*, **62**, 23 (1987).
- 19) M. Kita, K. Kashiwabara, and J. Fujita, *Bull. Chem. Soc. Jpn.*, **61**, 3187 (1988).
- 20) M. Takata, K. Kashiwabara, H. Ito, T. Ito, and J. Fujita, *Bull. Chem. Soc. Jpn.*, **58**, 2247 (1985).
- 21) M. Okuno, M. Kita, K. Kashiwabara, and J. Fujita, *Chem. Lett.*, **1989**, 1643.
- 22) T. M. Miller, K. J. Ahmed, and M. S. Wrighton, *Inorg. Chem.*, 28, 2347 (1989), and references therein.
- 23) M. Kita, M. Gotoh, K. Kashiwabara, and J. Fujita, 58th Annual Meeting of the Chemical Society of Japan, Kyoto, March 1989, Abstr., No. 211B04.
- 24) S. Ohba, M. Ito, Y. Saito, and T. Ishii, *Acta Crystallogr.*, Sect. C, 39, 997 (1983).
- 25) I. R. Butler, W. R. Cullen, T. Kim, S. J. Rettig, and J. Trotter, *Organometallics*, 4, 972 (1985).
- 26) S. Onaka, Bull. Chem. Soc. Jpn., 59, 2359 (1986).
- 27) W. R. Cullen, T. Kim, F. W. B. Einstein, and T. Jones, Organometallics, 2, 714 (1983).
- 28) A. L. Bandini, G. Banditelli, M. A. Cinellu, G. Sanna, G. Minghetti, F. Demartin, and M. Manassero, *Inorg. Chem.*, **28**, 404 (1989).
- 29) E. J. Corey and J. C. Bailar, Jr., J. Am. Chem. Soc., 81, 2620 (1959).